| Site No. 003 Date 31/1 01 | Recorder's Name Melissa (+ Ben Isobel) | ssing | Photograph numbers and details FILM #-3 | 19 cross-section 1 | 21 Goss-Section 3 | General site view | LENGTH OF SAMPLING SITE Bankfull width %O (m) | x 10
Length of sampling site 800 | Access to site easy - via Uniarra | P | this side. | | BEFORE LEAVING THE SITE, CHECK DATA SHEETS TO ENSURE THAT ALL VARIABLES HAVE BEEN RECORDED | |---|--|----------------------------------|---|--|---------------------|-------------------|---|--|--|--|--|--------------|--| | Page 1 | 9:10am | Uniarra Crassing | Photograph numb | Shot 19 cm | 17 | Shot 22 6 | el or floodplain features. | Sleep banks
all along
left bank. | Pool With Ck | lood A | bedrock bedrock | outcrep //// | Modercately
Slaped banks | | AUSRIVAS Physical Assessment Protocol Field Data Sheets | Date 31/1/01 Site No. 003 Time | River Name Murrumbidgec Location | Weather Overcast Rain in last week? Y [✓] N [] | Latitude: 3 5 1 4 4 2 Longitude: 1 4 8 5 6 4 0 | Datum Garmin I plus | | PLANFORM SKETCH OF SITE Including bedform types, location of prose-sections, access points, landmarks and natural or artificial channel or floodplain features. Left bank is facing downstream. | Flow frapid (1) rapid (2) rapid | 100 K 20 K 0 K 0 K 0 K 0 K 0 K 0 K 0 K 0 | Total pust picture of the property prop | Sternion Swentle / Sternion St | Sancraps | picnic area
banks lined with mature Gasuarinas | Acknowledgments - The content and layout of these data sheets are derived from the sheets used in the River Habitat Audit Procedure (Anderson, 1993a), AUSRIVAS, the Index of Stream Condition (Ladson and White, 1999 and DNRE Victoria) and the River Habitat Survey (Raven et al., 1998). | AUSRIVAS Physical Assessment Protocol Field | ol Field Data Sheets | Page 2 | 2 Site No. 003 | Date 31/1/01 | |---|---|----------------------------------|---|--| | BASIC WATER CHEMISTRY | Valley shape
Units Choose one category only | y only | Local impacts on streams
Choose one or more categories and describe the detail of each | nd describe the detail of each | | Temperature 145.8 | > | Steep valley | Sand or gravel mining Other mining | Sewage effluent Channel straightening | | Dissolved Oxygen Sat. 115.5 | | Shallow valley | Road Bridge / culvert / wharf | River improvement works Water extraction | | pH S.42 |)
 | Broad valley | Ford / ramp | Dredging Scazing | | ogen samon | 7 | Gorge | Forestry activities | ∑ Litter | | 1 | } | Symmetrical | Irrigation run-off or pipe outlet | Other | | Amount of H ₂ SO ₄ 10.7 | | Asymmetrical
floodplain | Description Other = Small Gazing = Some present Gazing = Original Cros | Description Others small officiale pipe for hillers Grazings some present slightly upstream Bridge Uniaria Crossing concrete bridge | | | - Sil | | Local landuse Slightly de | slightly downstream | | Floodplain width | Average O (m) | (F | Choose one category for each bank Left Right | THE STATE OF S | | Floodplain features
Choose one or more features when present | | | Native forest Native grassland
(not grazed) | ot grazed) . | | Sampling site has no distinct floodplain | Scroll systems Short, crescentic strips or patches formed | patches formed | Grazing (native or non-native pasture) | on-native pasture) | | Oxbows / billabongs
Body of water occupying a former river | aking the inner bank of a stream meander | tream meander | Exotic grassland (i | Exotic grassland (lawns etc., no grazing) | | meander, isolated by a shift in the stream
channel | Splays
Small alluvial fan formed where an | where an | Forestry Native [][] Pine [][|][] Pine [][] | | Remnant channels Formed during a previous hydrological | overloaded stream breaks through a levee
and deposits material on the floodplain | through a levee
he floodplain | Urban residential | [][] mugared [][] | | regime. May be infilled with sediment | Floodplain scours
Scour holes formed by the concentrated | concentrated | Commercial | | | A channel that distributes water onto the | clearing and diggling action of flowing water | n of flowing water | Industrial or intensive agricultural | we agricultural | | floods | Floodplain present at the sampling site but | sampling site but | N Hedreamon | | | AUSRIVAS Physical Assessment Protocol | Field Data Sheets | ds Page 3 | 3 Site No. <u>003</u> | 903 | Date 31 1 01 | | | |--|--|--|--|---|--|--|---------------| | Riparian zone composition Assess for whole sampling site % Cover | | Vegetation Description | Longitudinal Choose one cate include ground to | ll extent of
tegory for e
layer excep
d. | Longitudinal extent of riparian vegetation Choose one category for each bank. Do not include ground layer except where site is in Lonalive grassland. but | # ž | Right
bank | | Trees (>10m in height) 70 | , | Casuarinas | None | | { | | | | Trees (<10m in height) | (A) | Casuarinas + some willows | S Isolated / scattered | sattered | 3 | | | | Ol shrubs | ue | Teatree | Regularly spaced | paced | 3 | | | | Grasses / ferns / sedges | п. | Non-native grasses in | Occasional clumps | clumps | <u>,</u> | | | | Shading of channel | _ | policarea | Semi-continuous | snone | The same | | | | X < 5% | □ 51 – 75% | ~ 16% | Continuous | | | A) | Ø | | Extent of trailing bank vegetation | Native and exc | Native and exotic riparian vegetation | Regenerati | on of nat | Regeneration of native woody vegetation is the sampling site in undisturbed forest? | E. | | | ☐ nil | % Native | 40 } Total 100% | Y[] N[\] | , [| | | | | slight extensive | % Exotic | | II no, record | Ă
■ | Abundant (>5% cover) and healthy
Present | and hee | althy | | Overall vegetation disturbance
rating Choose one category Overall vegetation disturbance rating | dation cleared on Bi | OTH sides, but with rinarian veget | category
category | > Spinorida | Very limited (<1% cover) | er) | | | disturbance category. Words within the drawings summarise the detailed text about the state of the riparian and valley vegetation for each category. | summarise the deta | ailed text about the state of the rip | rian and valley vege | station for | each category. | | | | Extreme disturbance | High disturbance | | Low disturbance |
8 | | | | | deares description of Riparian vegatation – absent or severely reduced. Vegatation is extremely disturbed (e. dominated by exist orgencies with native species may native or completely absent). Valley vegatation – agriculture and/or cleared land BOTH sides. Plants present are virtually all exists. | Gervic Columba
cos columba
distriction of the co | Riparian vegetation – moderately disturted by abox or though the influsion of excits apecters, although the structure of excits apecters, valvey vegetation – agriculture andor cleaned land Chill side, rethe vegetation on the other side cleanly disturted or with a high percentage of introduced species present | or minor uncernite or minor | Riparian was
on BOTH sid
condition with
deturbance is
Valley veget
BOTH sides
canopy and | Riparian vegetation – native vegetation-present
on BOTH sides of the river and in relatively good
condition with law excito-species present. Any
disturbance present is relatively minor.
Valley vegetation – rative vegetation present on
BOTH sides of the river, with a virtually intact
canopy and law enote species. | y y tran | | | Very high disturbance | Moderate disturbance | urbance 🔀 | Very low disturbance | rbance | | | | | deserta cleaned present full is acceptation – some native vegotation present full is acceptant acceptant acceptance of acceptanc | Serve ordinaries | Riparian vegetation – rative vegetation on BCTH
assists with contropy intact or with rative special
widespread and common in the riparian zone. The
immalen of exotic species is minor and on nodesale
viscos: Valley vegetation – agriculture analytic closed land
on OME adds, native vegetation on the other in
responsibly undisturbed state. | The program vegeral. | Ripartan veg
BOTH sides
BOTH sides
ratural veget
Valley veget
BOTH sides
apordes are a
vegetation in | Ripperian vegetation – rative vegetation present on
2017 sides of the river and in an undisturbed state.
Ende species are absent or rare. Representative of
natural vegetation is excellent condition.
Valley vegetation – native vegetation present on
Valley vegetation – native vegetation present on
2017 sides of the river with an intact campay. Exotion
approaches an ascent or rare. Representative of natural
vegetation in excellent condition. | ather or
after of
ton
Exotic
netural | | | Site No. 003 Date 31/1 01 | Extent of bars % of streambed forming a bar of any type 5 % | Dominant sediment particle size on bars | Pebble [] Gravel [] | ifications Choose one or more categories | No Reinforced modifications | Desnagged Revegetated | - | diversions | Resectioned Berms or embankments | Straightened signs of Recently work still channelised | Realigned works old Channelised and in the past | | Two stage Multi stage | Concrete V Pipe or culvert | |---|---|---|-----------------------|--|--------------------------------|---|-------------------|--------------------------|----------------------------------|---|---|--|--------------------------------------|----------------------------| | Page 4 | Type of bars Choose one or more categories % of streamber | Bars absent Dominant se | Side/point bars | VEGETATED Channel modifications | Side/point bars UNVEGETATED No | 3 | UNVEGETATED D | Bars around Cheprachions | nnel | Infilled channel | High flow deposits | | Deepened U shape Widened or infilled | V V shaped Trapezold | | AUSRIVAS Physical Assessment Protocol Field Data Sheets | age | Base Low High
flow flow flow | No passage | | Very restricted Passage | Moderately Noderately | Partly restricted | Passange Passange | Good passage 🛛 🖂 | Unrestricted Dassage | Type and height of barrier(s) Bedrock outcops may restrict (Cassage, especially through cittle Impid sechans. | Channel shape Choose one category only | U shaped Flat U shaped | Box Wide box | | Page 5 Site No. 003 Date 31/101 | Sediment oils Xabsent Iight moderate profuse | none Itecks globs sheen slick bock-in-ters only , fould be conscreen classed | Sediment odours X normal/none sewage petroleum chemical | anaerobic other Water odours | X normal/none sewage petroleum chemical | Turbidity (visual assessment) | Is water clarity reduced by: Suspended material Dissolved material (e.g mud, clay, organics) (e.g plant leachates) (e.g mud, clay, organics) (e.g plant leachates) Water level at the time of sampling Capper Dry No flow Low Baseflow or near baseflow High Flood (don't sample) Artificial features at the sampling site Choose one or more categories Choose one or more categories Weir Weir Ford Bridge Culvert Other weir Weir Weir Description Wingr Weir Ford Bridge Uricarra Crossing Slightly Capper Choose one of logs and branches greater than 10cm in diameter Swingles Notes on visibility CAD Present Description Des | |---|---|--|--|------------------------------|---|-------------------------------
--| | rotocol Field Data Sheets | Bank slope Choose one category for each bank Left Right bank bank | Vertical | Steep 60 - 80° | Moderate 30 - 60° | Low
10 - 30° | Flat | Assess % of each bank covered by bedrock outcrops % bedrock outcrops Left bank 45 Right Bank 15 Artificial bank protection measures Choose one or more categories None watering points Fence structures Natering points Pence structures Plantings Pock or wall layer Rip rap Rip rap Rip rap Rip rap Penced human Ilining Access Ilining | | NUSRIVAS Physical Assessment Protocol Field | Bank shape Choose one category for each bank Left Right pank bank | Concave X X | Convex | Stepped | Wide lower bench | Undercut | iactors affecting bank stability Thoose one or more categories None Mining Runoff Stock Stock Stock Trigation Graw-down Graw-down Trigation Graw-down Stock Trigation Graw-down Stock Trigation Graw-down Graw-down Graw-down Graw-down Graw-down Trigation Graw-down Graw-down Graw-down Graw-down Seepage Tord, culvert Flow and or bridge Other Other Description Gecrapion | | AUSRIVAS Physical Assessment Protocol | ysical Asses | ssment | Protocol Field Data Sheets | theets Page 6 | Site No. 003 Date 31/1 01 | . 1 | |--|--------------------|-----------|--|--|--|------------------------| | Extent of bedform features | fform feature | se . | 200 | Macrophyte cover Assess % cover of the | Assess % cover of the sampling site by each category. | lime
se | | local to composition for all realizates artists agost 100% | Silion for all leg | on C | ist equal 100% | Overall % cover of macrophytes | % cover of emergent macrophytes | O I G | | Gradient >60° | Waterfall | | % of site
Est. Av. Length (m) | | % cover of floating macrophytes | ope b | | | | | Est. Av. Height (m)
Est. Av. Gradient (") | | % cover of submerged macrophytes | (Loorts Le
No savos | | Step Height <1m | Cascade | d | % of site | Macrophyte composition | | 00T | | Strong currents | e de | | Est. Av. Lengtn (m)
Est. Av. Height (m) | Use a macrophyte field guide (i.e. Sainty and Jacobs, 1994) to aid identification.
Listed macrophytes can be changed to reflect the common taxa present in each | Use a macrophyte field guide (i.e. Sainty and Jacobs, 1994) to aid identification.
Listed macrophytes can be changed to reflect the common taxa present in each State or Territory. | loey. | | | 1 | | Est. Av. Gradient (*) | N denotes a native taxa and I denotes an introduced taxa. | oduced taxa. | | | Gradiant 3-5"
Strong currents | Rapid | 9 | % of site | Emergent macrophytes | Submerged macrophytes | | | Rocks break | 1 | | Est. Av. Length (m) | Present cover | Present cover | . 5 | | | | 9 | Est. Av. Deptin (m)
Est. Av. Width (m) | Brachiaria (Para Grass) | Ceratophylum (Hornwort) N | ı | | Consideration of the second | 1910 | v | 0 04 000 | Crassula (Crassula) N | Chara (Stonewart) N | ı | | Moderate currents | | 1 | % of site
Fet Av Length (m) | Cyperus (Sedge) I/N | Elodea (Canadian Pondweed) 1 | ı | | Surface unbroken
but unsmooth | T. | lg | Est. Av. Depth (m) | Eleocharis (Spikerush) N | Myriophydum (Water Milfoll) IVN | ı | | | | 'n | Est. Av. Width (m) | Juncus (Rush) IN | Attella (Stonewart) N | ı | | Gradient 1-3* | Glide | Ŋ | % of site | Paspalum (Water Couch) N | Potamogeson (Pondweed) N | ı | | Surface unbroken | | | Est. Av. Length (m) | Phragmites (Common Read) N | Trigochin (Water Pibbon) N | ı | | and smooth | | 9 | Est. Av. Depth (m)
Est Av Wicth (m) | Ranunculus (Buttercup) 1 | Valisneria (Pibbornweed) N | ı | | and a second | å | | mar sure sure first | Scirpus (Clubrush) N | Other | . 1 | | Small but district | | | % of site | Tripicahin (Water Ribbon) N | Other | | | & uniform current
Surface unbroken | |
Sr.:0 | Est. Av. Lengin (m)
Est. Av. Depth (m) | Typha (Cumbung) N | Other | 1 | | | | | Est. Av. Width (m) | Other | Floating macrophytes | | | Area where | Pool | 'n | % of site | Other | Present o | ā | | stream widens or
deepens and | | 0 | Est. Av. Length (m) | Other | Azota (Azota) N | ı | | oument declines | Ì | L | Est. Av. Depth (m) | | Calltriche (Sterwart) 1 | ı | | |) | 8 | Est. Av. Width (m) | | Other | | | A reasonable sized | Backwater | 0 | % of site | | Other | | | (>20% of channel
width) cut-off | | | Est. Av. Length (m) | | Other | - | | section away from
the channel | | | Est. Av. Vidth (m) | Overall % cover of native macrophyte taxa | Total should equal overall % cover | | | _ | | | | Overall % cover of native macrophyte taxa | 0 | | Note: An additional response variable glanform channel pattern is measured in the office | AUSRIVAS P | hysical and Ch | emical Asses | sment Protocol | Field Data Sheets | Page 8 | |-------------------|----------------|--------------|----------------|-------------------|--------| | Site No | 003 | Date31 | 1 01 | | | | | | | ' | | | USEPA Habitat Assessment Circle a score for each parameter #### HIGH GRADIENT STREAMS Page 1 of 2 | Habitat | | | | | | | | С | ondi | tion | cate | gory | , | | | _ | | | | | | |---|---|--|---|--|--------------------------------|---|---|---|--|-------------------------|--|---|---|---------------------|------------|---|--|--|--|--------------------------------------|-----------| | parameter | | Ex | celle | nt | | | | Good | | | l | | Fair | | | | | Po | or | | | | 1.
Epifaunal
substrate /
available cover | subs
epita
fish o
subn
bank
stabi
to all
pote
that | unal c
cover;
nergec
s, cob
le habi
low ful
ntial (i | avours
olonis
mix ol
i logs,
ble or
tat an
I color
e. log
t new | % of
able for
ation of
snag
under
other
dat st
nisatio
s/snag
fall an | and
8,
rout
lage
n | habit
full of
pote
habit
of pot
of act
the fi
not y
colo | tat; w
colonia
ntial;
tat for
opulat
ddition
orm o
yet pro-
nisati |
ell-su
sation
edequi
main
ions;
sal su
f new
spare | uate
tenan
prese
bstrat
fall, b
d for
ay rat | ce
nce
e in
ut | habit
avail
desii
frequ | tat; ho
lability
rable; | nix of a
sbitat
y less
auba
distu | than
trate | | hal | as the
bitat;
vious
stable | lack
; sub | of ha | ibitat
e | | | SCORE | 20 | 19 | 18 | 17 | 16 | 15 | ➂ | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 2.
Embeddedness | 25%
sedir
cobb | surror
ment. | rticles
unded
Layer
vides | nd
are 0
by fin
ing of
divers | 0 | 50% | der p | unde | and
s are
d by f | | 55% | der p | obble
article
ounde | s are | | mo
sur | avel,
uider
ore the
rroun
dimer | parti
an 75
ded b | cles
5% | are | | | SCORE | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | (10) | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 3.
Velocity / depth
regime | regin
deep
deep | , slow
, fast-
L3m/s, | esent
-shali
shalio | (slow-
ow, fa:
w). S | st- | pres
miss
than | ent (i
sing, s | fast-
core | regim
shallo
lower
other | | regir | mes p | the 4
reser
r slow
ng, so | nt (if fa
-shall | ust-
ow | wel | mina
locity
lually | (dept | ĥ reg | pime
p). | | | SCORE | 20 | 19 | 18 | 17 | 16 | 15 | 14 | (13) | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 4.
Sediment
deposition | Little or no enlargement of islands or point bars and bar less than 5% of the bottom affected by sediment sed deposition. | | | | | | Some new increase in
bar formation, mostly
from gravel, sand or fine
sediment; 5-30% of the
bottom affected; slight
deposition in pools. | | | | | Moderate deposition of
new gravel, sand or fine
sediment on old and
new bars; 30-50% of the
bottom affected;
sediment deposits at
obstructions,
constrictions and bends;
moderate deposition in
pools prevalent. | | | | | ervy o
sterial
velop
% of
angin
ols al
subst
positi | l, incoment
the b
g free
most
tantis | rease
t; mo
ottor
quen
abs | ed ba
re th
n
thy;
ent d | an
tue | | SCORE | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 5.
Channel flow
status | 20 19 18 17 16 Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. | | | | | Water file >75% of the available channel; or <25% of channel substrate is exposed. | | | | | Water fills 25-75% of the
available channel,
and/or riffle substrates
are mostly exposed. | | | | | Very little water in channel and mostly present as standing pools. | | | | | | | SCORE | 20 | 19 | 18 | ூ | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 6.
Channel
alteration | 20 19 18 17 16 Channelization or dredging absent or minimal; stream with normal pattern. | | | | | Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging (greater than 20 yr) may be present, but recent channelization is not | | | | | Channelization may be | | | | | Banks shored with gablon or coment; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely. | | | | | | | | | | | | | char | | ation | is not | | | | | | | | | | | | | | AUSRIVAS | Physical | and Chemical | Assessment | Protocol | Field Data Shee | ets Page 9 | |----------|----------|--------------|------------|----------|-----------------|------------| | Site No | 003 | Date | 31/1/01 | _ | Field Data Shee | | USEPA Habitat Assessment Circle a score for each parameter #### HIGH GRADIENT STREAMS Page 2 of 2 | Habitat | | | | | | | | C | on | dition | cate | gory | y | | | | | | | _ | |---|--|--|--|---|--|--|--|---|--|---|---|---|---|---------------------|--|--|--|--|-----------------------|-----------| | parameter | | Exc | elle | ent | | | | Good | ı | | | | Fair | | | | Po | or | | _ | | 7.
Frequency of
riffles (or bends) | Occurrelative of dis riffles the st (gene of hall stream continue of boularge, is impossible to the continue of o | vely france
clivid
tream
erally :
bitat is
ms winuous
ulders
, natu | eque
bet
ed b
<7:1
5 to
s key
here
s or c
ral o | ent; ra
ween
y wid
1
7); va
y. In
riffice
ceme
other | atio
th of
criety
s are
ent | infred
between | uen
oon
owk | ce of r
f; dista
riffles o
dth of t
betwe | ince
divid
the | ed | bottoo
some
betwee | hab
en re | al riffle
intours
itat; dis
iffles di
tith of th
betwee | providance
vided | de a | ienera
hallow
abitat;
etwee
y the
tream | riffie
dista
n riffi
width | s; po
ance
es di
of th | or
video
e | d | | SCORE | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | ➂ | 10 | 9 | 8 | 7 | 6 5 | 4 | 3 | 2 | 1 | 0 | | 8.
Bank stability
(score each bank) | Banks
of ero
abser
poten
proble
affect | osion
nt or r
ntial fo
ems. | or be
minin
or fut | ank fa
nal; li
ure | illure
ttle | of erc | uen
sior
5-3
has | it, sma
t, sma
n most
10% of
s areas | II are
ly he
bani | aled | 60% has a | of be
reas
erosi | ly unsta
ink in re
of eros
on pote
ods. | each
sion; | 8
fr
8
0 | Instab
reas;
equer
ection
bylous
0-100
rosion | raw a
nt allor
s and
s bani
% of I | areas
ng str
l ben
k slor
bank | raigh
ds;
ughin | nt
ng: | | SCORE | Left t | bank | Т | 10 | 9 | (8) |) [| 7 | T | 6 | 5 | 1 | 4 | 3 | | 2 | | 1 | - | 0 | | SCORE | Right | t bani | k | 10 | 9 | Õ | , | 7 | Ť | 6 | 5 | + | 4 | 3 | | 2 | 1 | 1 | - | 0 | | 9.
Vegetative
protection
(score each bank) | More
stream
and in
zone
veget
trees,
shrub
mecru
disrup
grazin
minim
almos
to gro | mban
mmec
cover
tation,
unde
ss, or
ophys
ption to
ng or
nal or
st all ; | k sur
fiate
red b
inch
esto
non
es; v
throu
mow
not o | rface:
ripari
y nat
uding
rey
wood
eget:
agh
ing
evide
s allo | s
ian
ive
i
by
stive
nt; | strea
cover
veget
of pla
repre
evide
full pla
to an
more | mba
red to
artici
sent
ont b
ant y
gre
than
oten
de h | | ve
one well-
srupt
affect
potr
ent;
half c | class
ion
sting
ential | cover
disrug
patch
close
veget
than o
poten |
mbar
ed b
stion
es o
ly cre
ation
one-i
tial p | f the
nk surfa
y veget
obviou
f bare s
opped
n comm
half of t
blant st
naining | s c | ess th
tream
overed
isrupti
egetat
egetat
emove
entime
verag | bank
d by v
ion of
tion is
tion h
d to s
etres | surfa
reget
stree
very
as be
or les | ces
ation
ambs
high
ean
as in | n;
ank
h; | | | SCORE | Left b | bank | | 10 | 9 | 8 | | 7 | | 6 | 5 | | 4 | 3 | | 2 | 1 | 1 | (| 0 | | SCORE | Right | bani | k ' | 10 | <u></u> | 8 | | 7 | | 6 | 5 | | 4 | 3 | | 2 | 1 | 1 | (| 0 | | 10.
Riparian zone
score
(score each bank) | Width of riparian zone
>18 metres; human
activities (i.e. roads,
lawns, crops etc.) have
not impacted the riparian
zone. | | | | | Width of riparian zone 12-18 metres; human activities have impacted the riparian zone only | | | | Width of riparian zone 6-
12 metres; human | | | | ed ri | Width of riparian zone
<6 metres; little or no
riparian vegetation is
present because of
human activities. | | | | | | | SCORE | Left b | oank | 1 | 10 | 9 | (8) | 1 | 7 | Г | 6 | 5 | Т | 4 | 3 | | 2 | 1 | 1 | (| 0 | | SCORE | | | _ | _ | - | (8) | _ | | - | - | | - | | _ | - | | - | _ | _ | - | | AUSRIVAS Phys
Site No. | | | | | | sses | | | | ocol | Fiel | d Da | ata S | Shee | ts | Pag | je 1 | 0 | | | | | |--|---|--|--|--|------------------------------------|--|--|--|--|---------------------------------|---|--|--------------------------|--------------------|---|--|---|-----------------------------------|-------|-------------|------------------|--| | USEPA Habitat
Circle a score for e | | | - | | J | LO | W (| GR | AD | IEI | ΝT | ST | RE | ΑN | 15 | | | F | age | 1 of | f 2 | | | Habitat | | | | | | | | (| Cond | ition | cate | gor | | | | | | | · | | | | | parameter | | Ex | celle | ent | | | (| Good | ł | | | | Fair | | | | | Po | or | | | | | 1. Epifaunal substrate / available cover | subsepifa
and
snag
unde
or of
and
colo
(i.e.
not | ater the strate aunal fish cogs, su ercut ther standard logs/snew fasient) | favou
colon
cover;
bmerg
banks
table
uge to
on po
snags
all and | rable isation mix or ged lo is, cobitation allow tentia that allow | n
f
gs,
ole
at
full | habi
full of
pote
habi
of po
of ac
the i
not y | tat; we colonical; tat for colonical col | ell-su
sation
adequations;
nal su
of new
epare
on (m | uate
prese
bstrat
/fall, b
d for
ay rat | or
nce
nce
e in
out | habi
avai
desi
freq | 80% ntat; hatat; hatat; hatatite; ha | abitat
/ less
subs | than
trate | | hat
obv | oitat;
/ious | an 10
lack
; sub
e or la | of ha | abitat
e | | | | SCORE | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 1,9 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | 2.
Pool substrate
characterization | mate
and
root
subi | ure of
erials,
firm s
mats
merge
mon. | with
and pand | grave
reval | ent; | mud
be d
mats | lomina | ay; mi
ant; so
subm | ud ma
ome r
ergeg | y
Ogst | All n
botto
mat; | nud o
om; lit
; no si
etation | tle or
ubme | no ro | | bed | | in cla
i; no | y or | mat (| or | | | SCORE | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13/ | 12 | 11 | 10 | 9 | 8 | Fi | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | 3.
Pool variability | shal
sma | n mix
llow, la
lil-sha
p pool | arge-d | deep,
small- | | Majo
dee | ority o | t pool
y few | s larg | e-
C | mor | llow p
e prev
p po | alent | | | | | of po | | | | | | SCORE | 20 19 18 17 16 | | | | 15/ | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | 4.
Sediment
deposition | | | | | | some new increase in
bar formation, mostly
from gravel, sand or fine
sediment; 20-50% of the
bottom affected; slight
deposition in pools | | | | | Moderate deposition of
new gravel, sand or fine
sediment on old and
new bars; 50-80% of the
bottom affected;
sediment deposits at
obstructions,
constrictions and bends;
moderate deposition in
pools prevalent. | | | | the
ds; | Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition. | | | | | ar
ian
due | | | SCORE | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | | | 8 | 7 | 6 | 5 | 4 |
3 | 2 | 1 | 0 | | | 5.
Channel flow
status | 20 19 18 17 16 Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. | | | | | avai
<25 | able
% of a | chanr
chann | l
% of the
nel; or
el
cosed | | | | | | | cha
pre | 5 4 3 2 1 0 Very little water in channel and mostly present as standing pools. | | | | | | | SCORE | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | 6.
Channel
alteration | drec
mini | nneliz
dging
imal; s
nal pa | abser
strean | nt or
n with | | Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e. dredging (greater than 20 yr) may be present, but recent channelization is not present. | | | | Channelization may be | | | | ents
ks;
eam | Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely. | | | | | | | | | SCORE | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | AUSRIVAS Phys
Site No. | sical and Chemical /
Date _ | Assessment Protoco | I Field Data Sheets | Page 11 | | | | | | | |---|--|---|--|---|--|--|--|--|--|--| | USEPA Habitat
Circle a score for o | Assessment lach parameter | LOW GRADIEN | NT STREAMS | Page 2 of 2 | | | | | | | | Habitat | | Condition | category | ,,, | | | | | | | | parameter | Excellent | Good | Fair | Poor | | | | | | | | 7.
Channel
sinuosity | The bands in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note – channel braiding is considered normal in coastal plains and other low-lying areas. This parameter is not easily rated in these areas). | The bends in the stream increase the stream length 2 to 3 times longer than if it was in a straight line. | The bends in the stream increase the stream 1 to 2 times longer than if it was in a straight line. | Channel straight;
waterway has been
channelized for a long
distance. | | | | | | | | SCORE | 20 19 18 17 16 | 15 14 13 12 11 | 1 6 9 8 7 6 | 5 4 3 2 1 0 | | | | | | | | 8.
Bank stability
(score each bank) | Banks stable; evidence
of erosion or bank failure
absent or minimal; little | Moderately stable;
infrequent, small areas
of erosion mostly healed | Moderately unstable; 30-
60% of bank in reach
has areas of erosion; | Upstable; many eroded
reas; 'raw' areas
frequent along straight | | | | | | | | | | | | | | | | | | 1 - 1 - | | L. - | |---|--|--|---|---|---|---|--|--|---|---|---|--------| | 8.
Bank stability
(score each bank) | Banks stable
of erosion or
absent or mir
potential for 1
problems. <t
affected.</t
 | Moderately stable;
infrequent, small areas
of erosion mostly heated
over, 5-30% of bask in
reach has areas
erosion. | | | Moderately unstable; 30-
60% of bank in reach
has areas of erosion;
high erosion potential
during floods. | | | Upstable; many eroded
leas; 'raw' areas
frequent along straight
sections and bends;
obvious bank sloughing;
60-100% of bank has
erosional scars. | | | | | | SCORE | Left bank | 10 | 9 | 8 | 1 | 6 | ~i | 4 / | 3 | 2 | 1 | 0 | | SCORE | Right bank | 10 | 9 | 8 | 7 | ~ | Q* | / | 3 | 2 | 1 | 0 | | 9.
Vegetative
protection
(score each bank) | More than 90% of the
streambank surfaces
and immediate riparian
zone covered by native
vegetation, including
trees, understorey
shrubs, or non woody
macrophytes; vegetative
disruption through
grazing or mowing
minimal or not evident;
almost all plants allowed
to grow naturally. | | | 70-96% of the streambank surface of vered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one half the potential plant stubble height remaining. | | | 60-70% if the alreament surfaces covered by vegetation; disruption obvious; petches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining. | | | Less than 50% of the
streambank surfaces
covered by vegetation;
disruption of streambank
vegetation is very high;
vegetation has been
removed to 5
centimetres or less in
average stubble height. | | | | SCORE | Left bank | 10 | 9 | 8 | 1 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | SCORE | Right bank | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 10.
Riparian zone
score
(score each bank) | Width of ripar
>18 metres; it
activities (i.e.
lawns, crops
not impacted
zone. | Width of riparian zone
12-18 metres; human
activities have impacted
the riparian zone only
minimally. | | | Width of riparian zone 6-
12 metres; human
activities have impacted
the riparian zone a great
deal. | | | Width of riperien zone
<6 metres; little or no
riperien vegetation is
present because of
human activities. | | | | | | SCORE | Left bank | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | SCORE | Right bank | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | AUSRIVAS Physical and Chemical Assessment Protocol Field Data Sheets Page 14 Site No. 003 Date 31/1/01 | Channel cross-sections and variables to be measured in the area around a cross section Detailed instructions on the measurement of channel cross-sections are provided in the protocol manual. Be familiar with these before proceeding. We cross-sections are required at homogeneous sampling sites (generally lowland streams) and three cross-sections at heterogeneous sampling is at or near the water mark level, stream width at the water the water mark. In this case, vertical distance between the safer surface and the water mark ahould be entered as 0. | Cross-section sketch 3 of 3 | SEF OF DRIFTING THE Cross-section | The charms beans about the charms are charmed at the charms about the charms about the charms about the charms about the charms are charms about the charms are charged at the charms about the charms are charged at charged at the charms are charged at the charged at the charms are charged at the charms are charged at the char | 13.6 P 25.4 31 36 41 | [30] [31] [31] [31] [31] [31] [31] [31] [31 | width (m) Right bank 20 (m) | Substrate composition for each bank Assess % composition the area of bed 5m Lett bank Right bank the cross-section. | 10 30 Bedrack 15 Periphyton cover 10 0 Boulder (>256nm) 5 | Pebble (16-54mm) | y <0.08mm) | |--|---|-----------------------------|-----------------------------------
--|----------------------|---|------------------------------|---|---|------------------|------------| | - | D 0 C ≥ 2 l | | | 1 E | - 5 | - 70 | ~ ~ | - | m m /3 | n // // | 177 |