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Chapter 7: Relativistic Treatment

In the previous chapters, we have been using a mixture of relativistic and non-relativistic

formalism. For instance, we have treated particles non-relativistically while describing

the classical scalar field relativistically. This complication has arisen because the focus of

our attention is the non-relativistic Bohm model, whereas the classical field examples we

have drawn from textbooks as guiding illustrations all obey Lorentz covariant equations.

Furthermore, discussions of energy-momentum tensors in books are nearly always

formulated relativistically. For example, the only expression used for Tµν
particle is

ρ0muµuν. Such presentations have a certain elegance whereas, as seen from equations [6-

24a] to [6-24d] earlier, developing a non-relativistic treatment for Tµν is messy and more

tedious because of the need to keep track of separate expressions for Tij, Ti0, T0i and T00.

The situation becomes more critical in attempting to construct a particular formulation of

Noether's theorem that will satisfy our present needs. A non-relativistic approach is more

difficult and becomes unclear, whereas a relativistic one is found to be comparatively

straightforward. For this reason, we will adopt a policy in the present chapter of

presenting a fully relativistic treatment. The non-relativistic results that we will

eventually need can then be obtained at the end by taking the non-relativistic limit.

To pursue this plan, it will be necessary to make temporary use of a relativistic version of

Bohm's model before taking the limit. A suitable model for this purpose has, in fact, been

formulated by Louis de Broglie1. While his model has certain contentious features

compared with Bohm's original model, these features will not have any bearing on the

present discussion because they do not affect the validity of our treatment and they vanish

in the non-relativistic limit.
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In the present chapter, it will be shown that a version of de Broglie's model incorporating

energy and momentum conservation can be constructed in a straightforward way.

7.1 De Broglie’s Model

In keeping with Bohm’s approach, de Broglie presumes that a particle has a definite

trajectory at all times. However, while Bohm’s model is based on the Schrodinger

equation, de Broglie’s formulation involves the Klein-Gordon equation instead:

h2

2m [∂µ∂
µφ + (mc

h )2φ] = 0 [7-1]

where φ is the Klein-Gordon wavefunction. (The dimensional factor h2

2m has been

included here for ease of comparison with equations [7-8] and [7-17] later.) From chapter

3 (and using the notation ψ = ReiS/h), the basic postulate of Bohm’s model is equation [3-

8] for the particle’s momentum p:

p = ∇∇∇∇S [7-2]

Using the analogous notation φ = ReiS/h in the Klein-Gordon case, the basic equation of de

Broglie’s relativistic model is:

pµ = – ∂µS [7-3]

where now pµ is the particle’s 4-momentum. Equations [7-2] and [7-3] are sufficient for

the minimalist versions (see chapter 3) of Bohm’s and de Broglie’s models, respectively.

If one wishes to go further and introduce a “quantum potential” Q into each model (as is

convenient for our purposes), the appropriate expressions are as follows. From equation

[3-14], the potential for Bohm’s non-relativistic model is the familiar expression:

Q = – h2

2m
∇2R

R

and, as pointed out in equation [5-13], this potential can be written in the equivalent

form:

                                                                                                                                                
1 de Broglie L., Nonlinear Wave Mechanics. Elsevier, Amsterdam (1960).
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Q = 1
2m ∂ jS ∂ jS – ∂ tS

In comparison with this last expression, the appropriate expression for de Broglie’s

relativistic model is:

Q = c (∂µS) (∂µS) – mc2 [7-4]

The corresponding equations of motion for the particle are then

dp
dt = – ∇∇∇∇Q

in the non-relativistic case and

dpµ

dτ = ∂µQ [7-5]

in the relativistic case (τ being the proper time).

There are three questionable features of de Broglie’s relativistic model compared with

Bohm’s non-relativistic one:

1. De Broglie’s model is based on the Klein-Gordon equation, whereas it might have

been more appropriate to have a relativistic model corresponding to the Dirac

equation. On the positive side, however, we are interested only in the non-

relativistic limit and this limit is more easily derived in the Klein-Gordon case.

2. De Broglie bases his model on the Klein-Gordon equation’s current density,

which leads him to the following probability density for the particle’s position at

any time:

P(x,t) = ih
2mc2 [ φ* ∂ tφ – φ ∂ tφ

* ]

= – 1
mc2 R2 ∂ tS

[7-6]

This expression has the disadvantage of not being positive definite (unlike the

simple expression R2 in Bohm’s model) and so requires the dubious notion of

negative probabilities. De Broglie attempts to explain this result physically in
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terms of the particle’s world line turning backwards in time. Fortunately this

controversial point need not be considered further here because the probability

density [7-6] reduces back to the positive expression R2 in the non-relativistic

limit.

3. In order for equations [7-3] and [7-5] to be compatible, de Broglie found it

necessary to introduce a “variable” rest mass2:

M = 1
c (∂µS) (∂µS)

= m + Q
c2

[7-7]

i.e., the rest mass is a function of the wavefunction φ. Again, this rather

unwelcome feature is no problem from our point of view because expression [7-7]

can be shown to reduce back to the usual, constant mass m in the non-relativistic

limit.

In Appendix 6 it is confirmed that equation [7-5] is consistent with [7-3] once [7-7] is

assumed. In other words, we can assume in formulating our relativistic Lagrangian

density that the particle’s motion is still governed by a scalar potential.

7.2 Lagrangian Density for de Broglie’s Model

By analogy with the Lagrangian density introduced in chapter 5 for Bohm’s model, a

similar expression will be proposed here for de Broglie’s relativistic case. We will begin

by simply stating the proposed expression, then discuss in detail the forms chosen for the

various terms. Our relativistic Lagrangian density is:

å = h2

2m [ (∂µφ
*) (∂µφ) – (mc

h )2 φ*φ ] ( field terms)

– ρ0 mc uµuµ ( particle term)

– ρ0 Q
uµuµ

c (interaction term)

[7-8]

                                                
2 In particular, de Broglie needed to relate the particle’s 4-momentum to its 4-velocity via this factor.
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where:

• φ is the Klein-Gordon wave-function,

• ρ0 is the rest density distribution of the particle through space3 (ρ0 will be a delta

function),

• m is the constant rest mass usually associated with the particle (not de Broglie’s

variable rest mass M),

• uµ is the particle's 4-velocity (uµ ≡ dxµ/dτ, where τ = proper time),

• Q is the scalar potential,

• c is the speed of light.

As with the Lagrangian densities considered in chapters 4 and 5, our expression here

consists of a “free-field” component, a “particle” component and an “interaction”

component. The free-field terms are the standard ones from which the Klein-Gordon

equation may be derived4. The particle term and interaction terms are also standard

expressions5. The form of this Lagrangian density is manifestly Lorentz invariant. The

various constant factors in its terms ensure that it has the required dimensions of energy

density.

It is to be understood here that, in deriving the equation of motion for the particle, one

must employ the well-known technique of replacing the proper time with an arbitrary

parameter while performing the variation process6. The interaction term in [7-8] is similar

in appearance to the non-relativistic one in [5-1], except for the additional factor 
uµuµ

c ,

which ensures parameterisation independence of the action. This factor also ensures that

                                                
3 i.e., the matter density in the particle’s instantaneous rest frame.
4 See, e.g., p. 14 in Greiner W., Relativistic Quantum Mechanics – Wave Equations, 2nd Ed. Springer,
Berlin (1997).
5 See, e.g., p. 289 in Anderson J.L., Principles of Relativity Physics, Academic Press, N.Y. (1967).
6 See, e.g., Sec. 7-9 in Goldstein H., Classical Mechanics, 2nd Ed. Addison-Wesley, Massachusetts (1980).
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the equation of motion7 obtained for the particle from this Lagrangian density is

compatible with the familiar relativistic identity uµuµ = c2 that the 4-velocity must satisfy

once the proper time is reinstated in place of the arbitrary parameter of variation. This

point will be demonstrated in Appendix 7.

The identity uµuµ = c2 does, of course, allow us to rewrite the particle and interaction

terms in the simpler forms

å particle = – ρ0 mc2 [7-9]

and

å interaction = – ρ0 Q [7-10]

However, these forms are not suitable for obtaining the particle’s equation of motion.

An explicit expression will be needed for the rest density distribution ρ0 of the particle

through space. We will take x to represent an arbitrary point in space-time and x0(τ) to

represent the particle's position in space-time at proper time τ. The rest density is

obtained by first noting (c.f., equation [5-3b]) that the particle’s "ordinary" density

distribution ρ will be the delta function expression:

ρ = δ(x1 –x0
1) δ (x2 – x0

2) δ(x3 – x0
3)

≡ δ(x – x0)
[7-11]

where the boldface x's represent points in 3-space:

x = (x1, x2, x3)

Now, the two densities are connected by the following well-known relationship8:

ρ0 = c
u0 ρ [7-12]

where u0 is the time component of the particle’s 4-velocity. Hence, combining [7-12] with

[7-11], we have

                                                
7 See, e.g., p. 290 in Anderson J.L., Principles of Relativity Physics, Academic Press, N.Y. (1967).
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ρ0 = c
u0 δ(x – x0) [7-13]

This is the required expression for the particle’s rest density distribution. It will be

needed in the next section for the derivation of the particle’s equation of motion.

Finally it should be noted that, in analogy to the non-relativistic case discussed in section

5.1, a more general relativistic Lagrangian density than [7-8] could be used in which the

particle and interaction terms are multiplied by an arbitrary constant k. Again, this would

leave the resulting equation of motion for the particle unchanged and would multiply the

source term of the resulting field equation by k.

7.3 Equation of Motion for the Particle

In Appendix 7 it is confirmed that our proposed relativistic Lagrangian density yields the

correct equation of motion [7-5]. Note that, as with the non-relativistic Lagrangian

density in chapter 5, we are effectively treating the particle’s velocity as an independent

variable here and temporarily suspending the de Broglie-Bohm restriction Muµ = – ∂µS.

This restriction can be restored at the end without any inconsistency once the Lagrangian

formalism has yielded the required equations for energy and momentum conservation.

7.4 Field Equation

The field equation corresponding to the Lagrangian density [7-8] will now be considered.

In analogy with the modified Schrodinger equation in chapter 5, this will be found to take

the form of the Klein-Gordon equation with an extra term added. From equation [5-8], the

appropriate form of Lagrange's equation for our needs is

∂µ
∂å

∂(∂µφ
*)

– ∂å
∂φ* = 0 [7-14]

                                                                                                                                                
8 See, e.g., p. 122 in Rindler W., Special Relativity, 2nd Ed. Oliver and Boyd, Edinburgh (1969).
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Now, there is no need to insert the field terms of [7-8] into equation [7-14], because that

would simply yield the standard Klein-Gordon equation, as these terms have been

designed to do9. Furthermore, inserting the particle term of [7-8] would simply yield zero,

since this term is not a function of φ. Therefore, anything extra to be added to the Klein-

Gordon equation will come purely from the interaction term of the Lagrangian density.

This term is

∂å interaction = – ρ0 Q
uµuµ

c
= – ρ0 Q

and using the expression for the potential in equation [7-4], it can be written as:

å interaction = – {c (∂µS) (∂µS) – mc2} ρ0 [7-15]

The additional term that arises when this interaction term is inserted into [7-14] is derived

in Appendix 8. The result is that the following “source term” is obtained:

ihc
2

1
φ* ∂µ

ρ0 ∂µS
(∂λS) (∂λS)

[7-16]

so that the Klein-Gordon equation [7-1] is modified to:

h2

2m [∂µ∂
µφ + (mc

h )2φ] = ihc
2

1
φ* ∂µ

ρ0 ∂µS
(∂λS)(∂λS)

[7-17]

Once the restriction pµ = – ∂µS is reimposed, this equation can be simplified (with the aid

of [7-7]) to:

h2

2m [∂µ∂
µφ + (mc

h )2φ] = – ih
2

1
φ* ∂µ

ρ0 pµ

M

i.e.,

h2

2m [∂µ∂
µφ + (mc

h )2φ] = – ih
2

1
φ* ∂µ(ρ0uµ) [7-18]

                                                
9 See, e.g., p.14 in Greiner W., Relativistic Quantum Mechanics – Wave Equations, 2nd Ed. Springer, Berlin
(1997).
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In analogy with the modified Schrodinger equation in chapter 5, the expression ∂µ(ρ0uµ)

on the right of [7-18] is seen to resemble the form of a continuity equation. This

expression equalling zero is, in fact, the condition for conservation of the “matter”

making up the particle. In the low energy, single particle case (i.e., in the absence of

creation and annihilation), this expression is zero and our new field equation simply

reduces back to the standard Klein-Gordon equation.

7.5 Energy-Momentum Tensor for the Particle

The remainder of this chapter will be concerned with demonstrating conservation of

energy and momentum for the relativistic model under consideration here. This will be

achieved by considering the energy-momentum tensors corresponding to the various

terms in the Lagrangian density [7-8]. The main result will be derived in the next section.

As a preliminary step, we will briefly focus on the energy-momentum tensor for the

particle. The expression for this tensor has already been given in equation [6-16].

Allowing for the variable rest mass M in de Broglie’s model, the particle’s energy-

momentum tensor has the form:

Tparticle
µν = ρ0Muµuν [7-19]

where uµ is the particle’s 4-velocity and the rest density ρ0 is defined in [7-13]. It is a

standard result10 that the divergence of this tensor is related to the rate of change of the

particle’s 4-momentum as follows:

∂νTparticle
µν = ρ0

dpµ

dτ [7-20]

Combining this with the equation of motion [7-5]:

dpµ

dτ = ∂µQ

we then obtain the relationship:
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∂νTparticle
µν = ρ0 ∂µQ [7-21]

This result will be needed in the following section.

7.6 Noether’s Theorem adapted to the Present Case

A formulation of Noether’s theorem designed specifically to serve our particular needs

will now be developed from first principles. As discussed at the end of the previous

chapter, this way of proceeding is necessary because of difficulties that arise in

attempting a more routine approach.

In most textbook examples of classical particle-field interactions, the interaction term of

the Lagrangian density does not involve derivatives of the field. This can be shown to

have the consequence that the overall energy-momentum tensor for that Lagrangian

density consists simply of Tµν
field plus Tµν

particle, with no additional terms Tµν
interaction. For

our more complex interaction term [7-15], this simple situation no longer holds. To find

the more general expression for the overall Tµν that is applicable to our case, we will

return to Noether's theorem and derive the required expression.

Our Lagrangian density is an explicit function of the field, its first derivatives and the

particle’s rest density, rest mass and 4-velocity:

å =å(φ, φ*, ∂αφ, ∂αφ*, ρ0, m, uα) [7-22]

The dependence of å on the particle's rest mass and 4-velocity will turn out to be

irrelevant here, because m is a constant and uα is not an explicit function of the

coordinates x (it is actually a function of the proper time τ). Equation [7-22] can

therefore be written more conveniently for our purposes as:

å =å(φ, φ*, ∂αφ, ∂αφ*, ρ0) [7-23]

                                                                                                                                                
10 See, e.g., pp. 25-27 in Felsager B., Geometry, Particles and Fields. Springer, N.Y., (1998).
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Noether’s theorem states that the system’s energy and momentum will be conserved

provided å is not an explicit function of the coordinates, i.e., provided we are not

required to write:

å =å(φ, φ*, ∂αφ, ∂αφ*, ρ0, x) [7-24]

We now take the partial derivative of å with respect to xµ, holding the other three

coordinates xλ constant, where λ ≠ µ. From [7-23], the full expression for this derivative

is

[∂å
∂xµ

]xλ
= [∂å

∂φ ]φ *, ∂αφ, ∂αφ *, ρ0
[ ∂φ
∂xµ

]xλ
+ [∂å

∂φ* ]φ, ∂αφ, ∂αφ *, ρ0
[
∂φ*

∂xµ
]xλ

+ [ ∂å
∂(∂νφ)

]φ, φ *, ∂αφ *, ρ0
[
∂(∂νφ)

∂xµ
]xλ

+ [ ∂å
∂(∂νφ

*)
]φ, φ *, ∂αφ, ρ0

[
∂(∂νφ

*)
∂xµ

]xλ

+ [ ∂å
∂ ρ0

]φ, φ *, ∂αφ, ∂αφ * [
∂ρ0

∂xµ
]xλ

[7-25a]

where the quantities held constant in each partial differentiation have been explicitly

displayed outside the square brackets. The third and fourth terms on the right each

contain a summation over ν. Note that in the more general case of [7-24] (instead of [7-

23]), the right-hand side of [7-25a] would have the extra term:

[∂å
∂xµ

]φ, φ *, ∂αφ, ∂αφ *, ρ0, xλ

since this term would then no longer be zero. (Also note how this term differs from the

one on the left-hand side of [7-25a].) From here on, the quantities held constant will not

be shown. Equation [7-25a] is then written more simply as:

∂å
∂xµ

= ∂å
∂φ ∂µφ + ∂å

∂φ* ∂µφ* + ∂å
∂(∂νφ)

∂µ(∂νφ) + ∂å
∂(∂νφ

*)
∂µ(∂νφ

*) + ∂å
∂ρ0

∂µρ0 [7-25b]

Now the first and second terms on the right of [7-25b] can be modified using the field

equation [7-14] for φ and the complex conjugate equation for φ*:

∂µ
∂å

∂(∂µφ*)
– ∂å

∂φ* = 0



_Chapter_7.doc

71

∂µ
∂å

∂(∂µφ) – ∂å
∂φ = 0

Equation [7-25b] then becomes

∂å
∂xµ

= [∂ν
∂å

∂(∂νφ) ] ∂µφ + [∂ν
∂å

∂(∂νφ
*)

] ∂µφ* + ∂å
∂(∂νφ)

∂µ∂νφ + ∂å
∂(∂νφ

*)
∂µ∂νφ

* + ∂å
∂ρ0

∂µρ0

= (∂µφ) ∂ν
∂å

∂(∂νφ) + (∂µφ*) ∂ν
∂å

∂(∂νφ
*)

+ (∂ν∂
µφ) ∂å

∂(∂νφ)
+ (∂ν∂

µφ*) ∂å
∂(∂νφ

*)
+ ∂å

∂ρ0
∂µρ0

= ∂ν (∂µφ) ∂å
∂(∂νφ) + (∂µφ*) ∂å

∂(∂νφ
*)

+ ∂å
∂ρ0

∂µρ0

This equation can be rearranged to

∂ν (∂µφ) ∂å
∂(∂νφ) + (∂µφ*) ∂å

∂(∂νφ
*)

– ∂å
∂xµ

+ ∂å
∂ρ0

∂µρ0 = 0

or, equivalently

∂ν (∂µφ) ∂å
∂(∂νφ) + (∂µφ*) ∂å

∂(∂νφ
*)

– gµνå + ∂å
∂ρ0

∂µρ0 = 0 [7-26]

In the special case when the Lagrangian density does not contain ρ0, i.e., there are no

particles present, equation [7-26] reduces to

∂ν (∂µφ ) ∂å
∂(∂νφ) + (∂µφ*) ∂å

∂(∂νφ
*)

– gµνå = 0 [7-27]

The curly bracket in [7-27] is then seen to have zero divergence and we can identify it as

Tµν, this definition being in agreement with [6-23] earlier. Energy and momentum

conservation is thereby achieved for this case.

To deal with the more general case where ρ0 is not zero, we will return to [7-26] and

rewrite it as

∂ν (∂µφ) ∂å
∂(∂νφ) + (∂µφ*) ∂å

∂(∂νφ
*)

– gµνå + ∂µ ∂å
∂ρ0

ρ0 – ρ0 ∂µ ∂å
∂ρ0

= 0

which then gives us
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∂ν (∂µφ) ∂å
∂(∂νφ) + (∂µφ*) ∂å

∂(∂νφ
*)

– gµν (å – ∂å
∂ρ0

ρ0) – ρ0 ∂µ ∂å
∂ρ0

= 0

Now, for the particular case of our Lagrangian density [7-8], this becomes

∂ν (∂µφ) ∂å
∂(∂νφ) + (∂µφ*) ∂å

∂(∂νφ
*)

– gµν (å –å particle –å interaction)

– ρ0 ∂µ – mc uµuµ – Q
uµuµ

c = 0

i.e.,

∂ν (∂µφ) ∂å
∂(∂νφ) + (∂µφ*) ∂å

∂(∂νφ
*)

– gµνå field + ρ0 ∂µQ = 0

and making use of the relationship [7-21] concerning the divergence of Tµν
particle, we

obtain

∂ν (∂µφ) ∂å
∂(∂νφ) + (∂µφ*) ∂å

∂(∂νφ
*)

– gµνå field + ∂ν Tparticle
µν = 0 [7-28]

Noting that L particle is not a function of ∂νφ or ∂νφ*, [7-28] can be written as

∂ν (∂µφ) ∂å field

∂(∂νφ) + (∂µφ*) ∂å field

∂(∂νφ
*)

– gµνå field

+ ∂ν (∂µφ) ∂å interaction

∂(∂νφ) + (∂µφ*) ∂å interaction

∂(∂νφ
*)

+ ∂ν Tparticle
µν = 0

[7-29]

The first curly bracket in [7-29] can be recognised as Tµν
field (c.f., expression [6-23]).

Introducing the definition

Tinteraction
µν ≡ (∂µφ) ∂å interaction

∂(∂νφ) + (∂µφ*) (∂å interaction

∂(∂νφ
*)

)

equation [7-29] can therefore be expressed as

∂ν Tfield
µν + ∂ν Tinteraction

µν + ∂ν Tparticle
µν = 0
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7.7 Summary of Equations describing Overall Conservation

Summarising the results of the previous section, conservation of energy and momentum

for the Lagrangian density [7-8] is described by the condition:

∂ν Ttotal
µν = 0 [7-30]

where the overall energy-momentum tensor can be written component-wise as:

Ttotal
µν = Tfield

µν + Tparticle
µν + Tinteraction

µν [7-31]

and the individual tensor components have been determined to be:

Tfield
µν = [ ∂µφ ∂

∂(∂νφ)
+ ∂µφ* ∂

∂(∂νφ
*)

– gµν ]å field [7-32]

Tparticle
µν = ρ0Muµuν [7-33]

Tinteraction
µν = [ ∂µφ ∂

∂(∂νφ)
+ ∂µφ* ∂

∂(∂νφ
*)

]å interaction [7-34]

Note that Tµν
interaction is zero when L interaction does not involve derivatives of the field.

This is actually the case for the electromagnetic field and for most classical examples

given in textbooks. It is not the case, however, for our L interaction.

7.8 Energy-Momentum Tensors Tµµµµνννν
field and Tµµµµνννν

interaction

Equation [7-33] above gives the explicit expression for Tµν
particle for any relativistic

Lagrangian density. Explicit expressions for Tµν
field and Tµν

interaction for our particular

Lagrangian density will now be considered. The expression for Tµν
field in the case of a

free Klein-Gordon field is well known11, so there is no need to derive it here from

equation [7-32]. It has the form:

Tfield
µν = h2

2m {(∂µφ)(∂νφ*) + (∂µφ*)(∂νφ) – gµν [(∂λφ
*)(∂λφ ) – (mc

h )2 φ*φ]} [7-35]

                                                
11 See, e.g., p. 15 in Greiner W., Relativistic Quantum Mechanics – Wave Equations, 2nd Ed. Springer,
Berlin (1997).
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It therefore remains for us to find an explicit expression only for Tµν
interaction. To do this,

we need to evaluate [7-34] for our particular interaction term [7-15]:

å interaction = – {c (∂µS) (∂µS) – mc2} ρ0 [7-36]

Inserting [7-36] into [7-34] yields:

Tinteraction
µν = (∂µφ) ∂[ – {c (∂αS) (∂αS) – mc2} ρ0]

∂(∂νφ) + (∂µφ*) ∂[ – {c (∂αS) (∂αS) – mc2} ρ0]
∂(∂νφ

*)

= – c {(∂µφ)
1

2 (∂αS) (∂αS)
∂[(∂λS) (∂λS)]

∂(∂νφ) + (∂µφ*)
1

2 (∂αS) (∂αS)
∂[(∂λS) (∂λS)]

∂(∂νφ
*)

} ρ0

= – c
(∂αS) (∂αS)

{(∂µφ) (∂λS)
∂(∂λS)
∂(∂νφ) + (∂µφ*) (∂λS)

∂(∂λS)
∂(∂νφ

*)
} ρ0

[7-37]

Now, using the fact that (∂νS) can be written in terms of the wavefunction and its

complex conjugate as follows:

∂µS = – ih
2 {

∂µφ
φ –

∂µφ
*

φ* } [7-38]

we obtain the identities:

∂(∂λS)
∂(∂νφ) = – ih

2 {gλν

φ – 0}

and

∂(∂λS)
∂(∂νφ

*)
= – ih

2 {0 – gλν

φ* }

Hence [7-37] becomes

Tinteraction
µν = ihc

2 (∂αS) (∂αS)
{ (∂µφ) (∂λS) gλν

φ – (∂µφ*) (∂λS) gλν

φ* } ρ0

= ihc
2 (∂αS) (∂αS)

{ (∂µφ) (∂νS) 1
φ – (∂µφ*) (∂νS) 1

φ* } ρ0

= ihc
2 (∂αS) (∂αS)

{
∂µφ
φ –

∂µφ*

φ* } (∂νS) ρ0

and using [7-38] we finally obtain

Tinteraction
µν =

– c (∂µS) (∂νS) ρ0

(∂αS) (∂αS)
[7-39]
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This is the desired term needed to complete the system’s overall energy-momentum

tensor. (It should be kept in mind that it is possible to write out this expression in full

using φ and φ* only, instead of using S as an abbreviation.)

In summary, gathering [7-33], [7-35] and [7-39] together, the overall energy-momentum

tensor for the system described by our relativistic Lagrangian density is made up of the

following parts:

Tfield
µν = h2

2m {(∂µφ)(∂νφ*) + (∂µφ*)(∂νφ) – gµν [(∂λφ
*)(∂λφ ) – (mc

h )2 φ*φ]} [7-40]

Tparticle
µν = ρ0Muµuν [7-41]

Tinteraction
µν =

– c (∂µS) (∂νS) ρ0

(∂αS) (∂αS)
[7-42]

7.9 Divergence and Conservation

The final task in this chapter is to check explicitly that the divergence of the overall

energy-momentum tensor for the particle-field system is zero and thereby confirm that

energy and momentum are conserved. Towards this end, the divergences of Tµν
field,

Tµν
particle and Tµν

interaction will be evaluated separately.

7.9.1 Divergence of Tµν
field

Taking the divergence of expression [7-40], we obtain

∂νTfield
µν = h2

2m {(∂ν∂
µφ)(∂νφ*) + (∂µφ)(∂ν∂

νφ*) + (∂ν∂
µφ*)(∂νφ ) + (∂µφ*)(∂ν∂

νφ)

– ∂µ [(∂λφ
*)(∂λφ ) – (mc

h )2φ*φ]}

= h2

2m {(∂λ∂
µφ)(∂λφ*) + (∂µφ)(∂ν∂

νφ*) + (∂λ∂
µφ*)(∂λφ ) + (∂µφ*)(∂ν∂

νφ)

– (∂µ∂λφ
*)(∂λφ ) – (∂λφ

*)(∂µ∂λφ ) + ∂µ[(mc
h )2 φ*φ]}

= h2

2m {(∂µφ)(∂ν∂
νφ*) + (∂µφ*)(∂ν∂

νφ) + (mc
h )2(φ* ∂µφ + φ ∂µφ*)}

[7-43]
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This can be simplified further by using the field equation corresponding to our

Lagrangian density, i.e., by using the extended Klein-Gordon equation [7-17]:

h2

2m [∂µ∂
µφ + (mc

h )2φ] = ihc
2

1
φ* ∂µ

ρ0 ∂µS
(∂λS)(∂λS)

which can be written more conveniently in the form:

∂ν∂
νφ = – (mc

h )2φ + imc
h

1
φ* ∂ν

ρ0 ∂νS
(∂λS)(∂λS)

[7-44]

Inserting [7-44] and its complex conjugate into [7-43], we obtain

∂νTfield
µν = h2

2m {(∂µφ) [ – (mc
h )2 φ* – imc

h
1
φ ∂ν

ρ0 ∂νS
(∂λS)(∂λS)

]

+ (∂µφ*) [ – (mc
h )2 φ + imc

h
1
φ* ∂ν

ρ0 ∂νS
(∂λS)(∂λS)

]

+ (mc
h )2(φ* ∂µφ + φ ∂µφ*)}

= – ihc
2 [

∂µφ
φ –

∂µφ*

φ* ] ∂ν
ρ0 ∂νS

(∂λS)(∂λS)

and using [7-38]:

∂µS = – ih
2 {

∂µφ
φ –

∂µφ
*

φ* }

the divergence of Tµν
field is seen to reduce to

∂νTfield
µν = c (∂µS) ∂ν

ρ0 ∂νS
(∂λS)(∂λS)

[7-45]

7.9.2 Divergence of Tµν
particle

The divergence of Tµν
particle for the particular case of our Lagrangian density has already

been stated earlier. From [7-21], it is:

∂νTparticle
µν = ρ0 ∂µQ [7-46]

7.9.3 Divergence of Tµν
interaction

Taking the divergence of expression [7-42], we obtain
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∂ν Tinteraction
µν = – c (∂µS) ∂ν

(∂νS) ρ0

(∂λS)(∂λS)
– c

(∂νS) ρ0

(∂λS)(∂λS)
∂ν(∂

µS)

= – c (∂µS) ∂ν
(∂νS) ρ0

(∂λS)(∂λS)
– c

ρ0

(∂λS)(∂λS)
(∂νS)∂µ(∂νS)

= – c (∂µS) ∂ν
(∂νS) ρ0

(∂λS)(∂λS)
– ρ0∂

µ (c (∂νS)(∂νS)

and using expression [7-4] for the quantum potential:

Q = c (∂µS) (∂µS) – mc2

the divergence of Tµν
interaction then becomes

∂ν Tinteraction
µν = – c (∂µS) ∂ν

(∂νS) ρ0

(∂λS)(∂λS)
– ρ0 ∂µQ [7-47]

7.9.4 Divergence of Tµν
total

From equation [7-31] we have:

Ttotal
µν = Tfield

µν + Tparticle
µν + Tinteraction

µν

The divergence of this overall energy-momentum tensor can now be obtained by

combining [7-45], [7-46] and [7-47] to obtain:

∂ν Ttotal
µν = ∂ν Tfield

µν + ∂ν Tparticle
µν + ∂ν Tinteraction

µν

= c (∂µS) ∂ν
ρ0 ∂νS

(∂λS)(∂λS)
+ ρ0 ∂µQ + – c (∂µS) ∂ν

(∂νS) ρ0

(∂λS)(∂λS)
– ρ0 ∂µQ

which cancels to:

∂ν Ttotal
µν = 0

This is the desired result for energy and momentum conservation. (The divergence

calculation above also serves as a useful double-check on our derivations of Tµν
field,

Tµν
particle and Tµν

interaction.)

Therefore, from the viewpoint of conservation, a satisfactory relativistic model has been

achieved.
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