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Chapter 8: Non-Relativistic Limit

In the previous chapter, a relativistic version of Bohm’s model incorporating energy and

momentum conservation has been successfully formulated. The task now is to take the

non-relativistic limit of that formalism. This will provide us with a mathematical

description which incorporates conservation into Bohm’s original model.

In the relativistic case, the symmetry between space and time made it sufficient to

consider a single tensor expression Tµν (µ,ν = 0,1,2,3). However, in dealing with the non-

relativistic limit, we must obtain separate expressions for each of the tensor components

Tij, Ti0, T0i and T00 (i,j = 1,2,3). Separate expressions must then be evaluated for the

divergence of the Tij and Ti0 together in the first instance and T0i and T00 together in the

second instance. This lengthens the analysis somewhat.

In taking the non-relativistic approximation, it will also be found that some subtleties

have to be taken into account. These will be illustrated by focussing our attention initially

on the energy-momentum tensor of the particle.

8.1 Non-Relativistic Energy-Momentum Tensor for the Particle

8.1.1 Physical Interpretation of Tµν
particle

From equation [7-19], the relativistic expression for the particle’s energy-momentum

tensor is:

Tparticle
µν = ρ0Muµuν [8-1]



_Chapter 8

79

In what follows, it needs to be kept in mind that the 4-velocity uµ is defined to be dx0
µ/dτ,

where x0
µ(τ) is the particle’s position at proper time τ. Note that uµ is a function of τ

whereas, in the non-relativistic limit, the 3-velocity vi = dx0
i/dt is a function of the

ordinary time t. Now, at first sight it would seem to be straightforward to take the non-

relativistic limit of expression [8-1]. The rest density ρ0 will become simply the density

ρ:

ρ0 → ρ [8-2]

and de Broglie’s variable mass M will reduce to the constant mass m:

M → m [8-3]

Furthermore, since the proper time τ will become simply the ordinary time t:

τ → t [8-4]

the 4-velocity uµ will reduce to 3-velocity for µ = 1,2,3:

dx0
i

dτ → dx0
i

dt (i=1,2,3) [8-5]

and will reduce to the constant c for µ = 0:

dx0
0

dτ → c (since x0 ≡ ct) [8-6]

Using the above limits then leads to the following result (with the expressions for Tij, Ti0,

T0i and T00 written out separately):

Tij
particle = ρmvivj (vi ≡ dx0

i

dt ) [8-7a]

Ti0
particle = T0i = ρmvic [8-7b]

T00
particle = ρmc2 [8-7c]

Examination of these expressions, however, raises two problems. First, factors of c are

still present, even though the expressions are meant to be non-relativistic. Second,
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looking at the energy density term T00 in [8-7c], we see that the particle’s rest energy mc2

has been retained in taking the above limit, while its kinetic energy has been lost. This is

not in keeping with the standard non-relativistic notion that the rest energy is a constant

which plays no role and can be ignored (even though it is usually larger than the kinetic

energy). To resolve these matters, a more careful analysis will now be given which

focuses on the physical interpretation of the initial expression [8-1].

As stated in [6-3a] to [6-3c], the various terms in Tµν
particle describe densities and currents

of both momentum and energy. In particular, using the relationship:

ρ0 uv = ρ c
u0 uv (from [7 –12])

= ρ dτ
dt

dx0
ν

dτ

= ρ dx0
ν

dt
[8-8]

plus the 4-momentum definition:

pµ ≡ Muµ [8-9]

the relativistic expression [8-1] can be written as:

Tparticle
µν = pµ ρ dx0

ν

dt [8-10]

Then, writing out the spatial and temporal components of this separately, we have:

Tparticle
ij = pi ρ vj [8-11a]

Tparticle
i0 = pi ρ c [8-11b]

Tparticle
0i = p0 ρ vi [8-11c]

Tparticle
00 = p0 ρ c [8-11d]
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Now, ρ in these expressions indicates a density and ρvi indicates a current. Hence, noting

that pi is the particle’s relativistic 3-momentum and p0c is its relativistic energy, we can

identify piρ as the momentum density of the particle, piρvj as momentum current, etc.,

and obtain:

Tij
particle  ≡ momentum current [8-12a]

Ti0
particle ≡ momentum density × c [8-12b]

T0i
particle ≡ energy current ÷ c [8-12c]

T00
particle = energy density [8-12d]

Note that, despite the fact that the terms Ti0 and T0i refer to two different physical

quantities, viz. momentum density and energy current, the tensor is nevertheless

symmetric: Ti0 = T0i. This is because, in the relativistic domain, momentum density and

energy current are equal apart from a constant factor.

At this point we will consider the special case of a free particle with constant momentum

and energy, so that the following divergence equation holds:

∂ν Tparticle
µν = 0 [8-13]

Breaking this up into separate spatial and temporal terms, we have:

∂ j Tparticle
ij + ∂0 Tparticle

i0 = 0 [8-14a]

∂ j Tparticle
0j + ∂0 Tparticle

00 = 0 [8-14b]

Now, inserting expressions [8-12] into equations [8-14], we note that all factors of c

cancel and we obtain:

∂j(momentum current) + ∂t(momentum density) = 0 [8-15a]

∂j(energy current) + ∂t(energy density) = 0 [8-15b]
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These two equations can be recognized as equations of continuity describing momentum

and energy conservation. Examining [8-12] and [8-15] highlights the basic physical

meaning of the energy-momentum tensor and its divergence. This essence should be

maintained in going to the non-relativistic limit. In other words, the non-relativistic

formalism for a free particle:

∂ j Tparticle
ij + ∂ t Tparticle

i0 = 0 [8-16a]

∂ j Tparticle
0j + ∂ t Tparticle

00 = 0 [8-16b]

should still have the interpretation presented in equations [8-15]. This fact will be used to

obtain the correct non-relativistic form for Tµν
particle.

Now, the non-relativistic momentum and energy of a particle are mv and E, respectively.

(Here, E is the particle’s total non-relativistic energy, i.e., the sum of the kinetic and

potential energies1). Incorporating this extra detail into equations [8-15], we obtain:

∂j(mvi ρvj) + ∂t(mvi ρ) = 0 [8-17a]

∂j(E ρvj) + ∂t(E ρ) = 0 [8-17b]

Comparing [8-16] with [8-17] then yields the results:

Tij
particle = mvi ρvj [8-18a]

Ti0
particle = mvi ρ [8-18b]

T0i
particle = E ρvi [8-18c]

T00
particle = E ρ [8-18d]

These expressions do not suffer from the two problems mentioned earlier, i.e., there are

no longer any factors of c present2 and the rest energy mc2 has been eliminated in favour

                                                
1 The reason for specifying the total energy here, rather than just the kinetic energy, will become clear in
the next section.
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of kinetic plus potential energy. On the other hand, the symmetry Ti0 = T0i has been lost.

It is important to note the source of this non-symmetry. Essentially it is due to the fact

that neglecting rest energy ends the similarity between momentum density and energy

current that had existed in the relativistic domain. Now that we have a physical

explanation for the lack of symmetry, the objection raised towards the end in chapter 6

has lost its efficacy3 and expressions [8-18] can be adopted as the appropriate non-

relativistic form for Tµν
particle.

8.1.2 Rules for obtaining the Non-Relativistic Limit

A systematic procedure for obtaining [8-18] can be summarized by the three rules set out

below. This will be helpful later in considering the cases of Tµν
field and Tµν

interaction.

Starting with the relativistic expressions for Tij, Ti0, T0i and T00, the rules are as follows:

1. Remove terms containing mc2 from T0i and T00. (To keep the overall

divergence zero, it may also be necessary to remove any term whose divergence

would previously have cancelled with that of a deleted mc2 term.)

2. Divide Ti0 by c and multiply T0i by c (to remove redundant factors of c from

these two expressions).

3. Take the non-relativistic limit c → ∞.

                                                                                                                                                
2 Note that the various factors of c appearing in the relativistic case are needed to ensure that all the
components of Tµν have the same dimensions (i.e., units of energy density) and thereby ensure that time
and space remain on an equal footing. This symmetry between time and space components is not necessary
in the non-relativistic case.
3 It was also mentioned near the beginning of chapter 6 that symmetry of the energy-momentum tensor is
required for conservation of angular momentum in the relativistic case. For the non-relativistic realm, it
turns out that angular momentum conservation is related to the symmetry of a different tensor, namely the
“mass-momentum” tensor. This alternative tensor continues to satisfy Ti0 = T0i, but its divergence describes
conservation of mass and momentum (instead of energy and momentum). The non-relativistic mass-
momentum tensor for a particle has the form: Tij = ρmvivj, Ti0 = T0i = ρmvi, T00 = ρm.
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The motivation for Rule 1 has already been discussed. Rule 2 can be obtained by

returning to [7-20]:

∂νTparticle
µν = ρ0

dpµ

dτ

and breaking this relativistic equation up into separate spatial and temporal terms:

∂ j Tparticle
ij + ∂0 Tparticle

i0 = ρ0
dpi

dτ [8-19a]

∂ j Tparticle
0j + ∂0 Tparticle

00 = ρ0
c

dE
dτ [8-19b]

Noting the factors of c contained in the derivatives ∂0 ≡ ∂/∂(ct), these equations can then

be written as

∂ j Tparticle
ij + ∂ t ( 1

c Tparticle
i0 ) = ρ 0

dp i

dτ [8-20a]

∂ j (c Tparticle
0j ) + ∂ t Tparticle

00 = ρ0
dE
dτ [8-20b]

Now, in contrast to this relativistic case, the non-relativistic version should be:

∂ j Tparticle
ij + ∂ t Tparticle

i0 = ρ dpi

dt [8-21a]

∂ j Tparticle
0j + ∂ t Tparticle

00 = ρ dE
dt [8-21b]

Comparing equations [8-20] with [8-21] term by term, it is then seen that Rule 2 is

necessary for the correct non-relativistic limit to be obtained.

The three rules above can be summarized in equation form as follows:

T non –rel
ij = limc → ∞ T rel

ij [8-22a]

T non –rel
i0 = limc → ∞ (T rel

i0 ÷ c) [8-22b]

Tnon–rel
0i = limc → ∞ { [ Trel

i0 – (mc2 terms) ] × c } [8-22c]

Tnon–rel
00 = limc → ∞ [ Trel

00 – (mc2 terms) ] [8-22d]
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A more formal derivation of the non-relativistic form for Tµν
particle is given in the next

section using the rules stated above.

8.1.3 Derivation of Tµν
particle

The non-relativistic expressions [8-18] will be derived here from the corresponding

relativistic expression [8-1]:

Tparticle
µν = ρ 0Mu µu ν

= ρ 0 M dx0
µ

dτ
dx0

ν

dτ

[8-23]

by using the three rules formulated in the previous section. We begin by using equation

[8-8]:

ρ0 uµ = ρ dx0
µ

dt

to rewrite expression [8-23] as:

Tparticle
µν = ρ M dx0

µ

dt
dx0

ν

dτ

= ρ M dx0
µ

dt
dx0

ν

dt
dt
dτ

[8-24]

Now, in formulating the non-relativistic limit, the following binomial expansion will be

useful4:

dt
dτ

= 1
1 – v 2

c 2

= 1 + 1
2

v 2

c 2 + 3
8

v4

c 4 + ...
[8-25]

Inserting this into [8-24] and presenting the expressions for Tij, Ti0, T0i and T00 separately,

we have:
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Tparticle
ij = ρ M vi vj [ 1 + 1

2
v2

c2 + ... ]

Tparticle
i0 = ρ M vi c [ 1 + 1

2
v2

c2 + ... ]

Tparticle
0i = ρ M c vi [ 1 + 1

2
v2

c2 + ... ]

Tparticle
00 = ρ M c2 [ 1 + 1

2
v2

c2 + ... ]

which will be written more conveniently here in the form:

Tparticle
ij = ρ M vi vj [ 1 + 1

2
v2

c2 + ... ] [8-26a]

Tparticle
i0 = ρ M vi c [ 1 + 1

2
v2

c2 + ... ] [8-26b]

Tparticle
0i = ρ vi

c [ Mc2 + 1
2Mv2 + ... ] [8-26c]

Tparticle
00 = ρ [ Mc2 + 1

2Mv2 + ... ] [8-26d]

To proceed further, we refer back to [7-7]:

M = m + Q
c2

which allows us to rewrite our equations as:

Tparticle
ij = ρ M vi vj [ 1 + 1

2
v2

c2 + ... ]

Tparticle
i0 = ρ M vi c [ 1 + 1

2
v2

c2 + ... ]

Tparticle
0i = ρ vi

c [ mc2 + Q + 1
2Mv2 + ... ]

Tparticle
00 = ρ [ mc2 + Q + 1

2Mv2 + ... ]

Now, applying Rule 1, i.e., deleting terms containing the rest energy mc2 from the energy

current expression T0i and the energy density expression T00, we obtain:

Tparticle
ij = ρ M vi vj [ 1 + 1

2
v2

c2 + ... ]

                                                                                                                                                
4 See, e.g., pp. 67 and 85 in Rindler W., Special Relativity, 2nd Ed., Oliver and Boyd, Edinburgh (1969).
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Tparticle
i0 = ρ M vi c [ 1 + 1

2
v2

c2 + ... ]

Tparticle
0i = ρ vi

c [ Q + 1
2Mv2 + ... ]

Tparticle
00 = ρ [ Q + 1

2Mv2 + ... ]

(The deletion of mc2 from T0i
particle can be shown to balance its deletion from T00

particle, so

that the overall divergence remains zero. This will be verified later when the total

divergence is evaluated in detail.) Proceeding on, we divide Ti0 by c and multiply T0i by c

in accordance with Rule 2, which yields:

Tparticle
ij = ρ M vi vj [ 1 + 1

2
v2

c2 + ... ]

Tparticle
i0 = ρ M vi [ 1 + 1

2
v2

c2 + ... ]

Tparticle
0i = ρ vi [ Q + 1

2Mv2 + ... ]

Tparticle
00 = ρ [ Q + 1

2Mv2 + ... ]

Finally, we take the non-relativistic limit c → ∞ in accordance with Rule 3. This also

requires using the result [8-3] plus the following known limit5:

(de Broglie’s relativistic Q) → (Bohm’s non-relativistic Q) [8-27]

The expressions resulting from this step are:

Tparticle
ij = ρmvivj [8-28a]

Tparticle
i0 = ρmvi [8-28b]

Tparticle
0i = ρvi [1

2mv2 + Q] [8-28c]

Tparticle
00 = ρ [1

2mv2 + Q] [8-28d]

i.e.,

                                                
5 See p. 121 in: L. de Broglie, Nonlinear Wave Mechanics, Elsevier, Amsterdam (1960).



_Chapter 8

88

Tparticle
ij = ρmvivj

Tparticle
i0 = ρmvi

Tparticle
0i = ρviE

Tparticle
00 = ρE

where E ≡ ½mv2 + Q. These equations are then seen to be expressions [8-18] as required.

Note that the reason for the lack of symmetry of Tµν
particle in the non-relativistic case can

be seen clearly by looking at equations [8-26]. In applying our rules to the components

Ti0 and T0i, we keep the first order term but drop the second order one in Ti0, whereas in

contrast we keep the second order term but drop the first order one in T0i. Not

surprisingly, this reversal results in the two expressions becoming different.

We are now in a position to find the appropriate non-relativistic expressions for Tµν
field

and Tµν
interaction.

8.2 Non-Relativistic Energy-Momentum Tensor for the Field

A possible form for the Schrodinger Tµν
field has already been derived in Appendix 4 using

the standard formula [6-23]:

Tfield
µν = [ ∂µψ ∂

∂(∂νψ)
+ ∂µψ* ∂

∂(∂νψ*)
– gµν ]å field

but it is necessary here to determine whether that result is in agreement with the non-

relativistic limit of the Klein-Gordon expression [7-35]:

Tfield
µν = h2

2m {(∂µφ)(∂νφ*) + (∂µφ*)(∂νφ) – gµν [(∂λφ
*)(∂λφ ) – (mc

h )2 φ*φ]} [8-29]
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To take this limit for comparison, we need to know the relationship between the Klein-

Gordon wavefunction φ and the Schrodinger wavefunction ψ. This relationship, which is

a standard formula of quantum mechanics6, is as follows:

φ = ψ e– i
hmcx0

(x0 = ct) [8-30]

Inserting [8-30] in [8-29] yields

Tfield
µν = h2

2m { (∂µ[ψe– i
hmcx0]) (∂ν[ψ*e i

hmcx0]) + (∂µ[ψ*e i
hmcx0]) (∂ν[ψe– i

hmcx0])

– gµν (∂λ[ψ*e i
hmcx0]) (∂λ[ψe– i

hmcx0]) + gµν (mc
h )2 ψ*ψ }

and employing the identities [5-19]:

∂xν/∂xµ ≡ gµν

∂xν/∂xµ ≡ δν
µ

we then obtain:

Tfield
µν = h2

2m { (∂µψ) (∂νψ*) + ψψ*(– imc
h ) g0µ ( imc

h ) g0ν

+ (∂µψ) ψ* ( imc
h ) g0ν + ψ (– imc

h ) g0µ (∂νψ*)

+ (∂µψ*) (∂νψ) + ψ*ψ ( imc
h ) g0µ (– imc

h ) g0ν

+ (∂µψ*) ψ (– imc
h ) g0ν + ψ* ( imc

h ) g0µ (∂νψ)

– gµν [ (∂λψ*) (∂λψ) + ψ*ψ ( imc
h ) δλ

0 (– imc
h ) g0λ

+ (∂λψ*) ψ (– imc
h ) g0λ + ψ* ( imc

h ) δλ
0 (∂λψ) ]

+ gµν (mc
h )2 ψ*ψ }

= h2

2m { (∂µψ) (∂νψ*) + (∂µψ*) (∂νψ) + 2 (mc
h )2 g0µ g0ν ψψ*

+ imc
h [ g0µ (ψ* ∂νψ – ψ ∂νψ*) + g0ν (ψ* ∂µψ – ψ ∂µψ*)

– gµν [ (∂λψ*) (∂λψ) + imc
h (ψ* ∂0ψ – ψ ∂0ψ*) ] }

                                                
6 See, e.g., p. 7 in Greiner W., Relativistic Quantum Mechanics – Wave Equations, 2nd Ed., Springer, Berlin
(1997).
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= h2

2m [ (∂µψ) (∂νψ*) + (∂µψ*) (∂νψ) ] + mc2 g0µ g0ν ψψ*

+ ihc
2 [ g0µ (ψ* ∂νψ – ψ ∂νψ*) + g0ν (ψ* ∂µψ – ψ ∂µψ*) ]

– gµν [ h2

2m (∂λψ*) (∂λψ) + ihc
2 (ψ* ∂0ψ – ψ ∂0ψ*) ]

[8-31]

To proceed towards the non-relativistic approximation, we now apply Rule 1 and delete the

mc2 term from this expression. In doing so, it is necessary to keep the overall divergence of

the energy-momentum tensor zero. This means it is also necessary here to remove the term

that would previously have cancelled with the deleted mc2 term. It is not difficult to identify

this term, as follows. The divergence (∂ν) of the mc2 term would have given a result of the

form:

mc2 g0µ ∂0(ψψ*)

i.e., a term containing the factor g0µ. This could cancel only with another term containing

g0µ. Hence, looking at [8-31], we deduce that it is the term:

(ihc/2) g0µ (ψ* ∂νψ − ψ ∂νψ*)

that should also be deleted. (This conclusion will be verified more rigorously later by

calculating the divergence in full.) On the above basis, [8-31] reduces to:

Tfield
µν = h2

2m [ (∂µψ) (∂νψ*) + (∂µψ*) (∂νψ) ] + ihc
2 g0ν (ψ* ∂µψ – ψ ∂µψ*)

– gµν [ h2

2m (∂λψ*) (∂λψ) + ihc
2 (ψ* ∂0ψ – ψ ∂0ψ*) ]

[8-32]

Continuing on, the relativistic limit is obtained by taking the speed of light to be essentially

infinite. In taking this limit, we will need to consider the Tij, Ti0, T0i and T00 cases

separately.
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8.2.1 Non-Relativistic Tij
field

For this case, [8-32] yields

Tfield
ij = h2

2m [ (∂ iψ) (∂ jψ*) + (∂ iψ*) (∂ jψ) ] + 0

– gij [ h2

2m { (∂kψ*) (∂kψ) + (∂0ψ*) (∂0ψ) } + ihc
2 (ψ* ∂0ψ – ψ ∂0ψ*) ]

(where k = 1,2,3). Switching from x0 to ct, this becomes

Tfield
ij = h2

2m [ (∂ iψ) (∂ jψ*) + (∂ iψ*) (∂ jψ) ]

– gij [ h2

2m { (∂kψ*) (∂kψ) + 1
c2 (∂ tψ*) (∂ tψ) } + ih

2 (ψ* ∂ tψ – ψ ∂ tψ*) ]

and taking the limit c → ∞, our Schrodinger expression for Tij is found to be

Tfield
ij = h2

2m [ (∂ iψ) (∂ jψ*) + (∂ iψ*) (∂ jψ) ] – gij [ h2

2m (∂kψ*) (∂kψ) + ih
2 (ψ* ∂ tψ – ψ ∂ tψ*) ]

[8-33]

8.2.2 Non-Relativistic Ti0
field

Inserting µ = i, ν = 0 into [8-32], we obtain

Tfield
i0 = h2

2m [ (∂ iψ) (∂0ψ*) + (∂ iψ*) (∂0ψ) ] + ihc
2 (ψ* ∂ iψ – ψ ∂ iψ*) – 0

= h2

2mc [ (∂ iψ) (∂ tψ*) + (∂ iψ*) (∂ tψ) ] + ihc
2 (ψ* ∂ iψ – ψ ∂ iψ*)

Dividing through by c in accordance with Rule 2, this becomes:

Tfield
i0 = h2

2mc2 [ (∂ iψ) (∂ tψ*) + (∂ iψ*) (∂ tψ) ] + ih
2 (ψ* ∂ iψ – ψ ∂ iψ*)

and taking the limit c → ∞, the Schrodinger expression for Ti0 is then found to be:

Tfield
i0 = ih

2 (ψ* ∂ iψ – ψ ∂ iψ*) [8-34]

8.2.3 Non-Relativistic T0i
field

Inserting µ = 0, ν = i into [8-32], we obtain
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Tfield
0i = h2

2m [ (∂0ψ) (∂ iψ*) + (∂0ψ*) (∂ iψ) ] + 0 – 0

= h2

2mc [ (∂ tψ) (∂ iψ*) + (∂ tψ*) (∂ iψ) ]

Multiplying through by c in accordance with Rule 2, then gives:

Tfield
0i = h2

2m [ (∂ iψ) (∂ tψ*) + (∂ iψ*) (∂ tψ) ] [8-35]

This is our Schrodinger expression for T0i
field, since there are no factors of c remaining to

require the limit c → ∞ to be taken.

8.2.4 Non-Relativistic T00
field

Inserting µ = 0 and ν = 0 into [8-32], we obtain:

Tfield
00 = h2

2m [ (∂0ψ) (∂0ψ*) + (∂0ψ*) (∂0ψ) ] + ihc
2 (ψ* ∂0ψ – ψ ∂0ψ*)

– h2

2m (∂λψ*) (∂λψ) – ihc
2 (ψ* ∂0ψ – ψ ∂0ψ*)

= h2

m (∂0ψ) (∂0ψ*) – h2

2m (∂λψ*) (∂λψ)

= h2

mc2 (∂ tψ) (∂ tψ*) – h2

2m { (∂kψ*) (∂kψ) +
1
c2 (∂ tψ) (∂ tψ*) }

and taking the limit c → ∞, the Schrodinger expression for T00 is found to be:

Tfield
00 = – h2

2m (∂kψ*) (∂kψ) [8-36]

8.2.5 Overall Non-Relativistic Result for Tµν
field

Gathering together expressions [8-33] to [8-36], our non-relativistic form for Tµν
field is:

Tfield
ij = h2

2m [ (∂ iψ) (∂ jψ*) + (∂ iψ*) (∂ jψ) ] – gij [ h2

2m (∂kψ*) (∂kψ) + ih
2 (ψ* ∂ tψ – ψ ∂ tψ*) ]

[8-37a]

Tfield
i0 = ih

2 (ψ* ∂ iψ – ψ ∂ iψ*) [8-37b]

Tfield
0i = h2

2m [ (∂ iψ) (∂ tψ*) + (∂ iψ*) (∂ tψ) ] [8-37c]

Tfield
00 = – h2

2m (∂kψ*) (∂kψ) [8-37d]
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Comparison with Appendix 4 then shows that the two different derivations have yielded the

same result.

8.3 Non-Relativistic Energy-Momentum Tensor – Interaction Component

The non-relativistic form for Tµν
interaction will now be derived. From equation [7-42], the

relativistic expression is

Tinteraction
µν = –

c (∂µS) (∂νS) ρ0

(∂αS) (∂αS)
[8-38]

This expression can be written in terms of the Klein-Gordon wavefunction φ and its

complex conjugate φ*, instead of in terms of the phase S, by using [7-38]:

∂µS = – ih
2 {

∂µφ
φ –

∂µφ
*

φ* } [8-39]

It will be more convenient, however, to proceed by first re-expressing [8-39] in terms of the

Schrodinger wavefunction ψ, using the relationship [8-30] that connects φ and ψ:

φ = ψ e– i
hmcx0

(x0 = ct)

Inserting this relationship into [8-39] yields

∂µS = – ih
2 {

∂µ[ψe– i
hmcx0]

ψe– i
hmcx0 –

∂µ[ψ*e i
hmcx0]

ψ*e i
hmcx0 }

and employing the identities [5-19], this becomes:

∂µS = – ih
2 {

∂µψ
ψ

– imc
h δµ

0 –
∂µψ*

ψ* – imc
h δµ

0 }

= ih
2 (

∂µψ*

ψ* –
∂µψ
ψ

) – mc δµ
0

This result will now be inserted into equation [8-38] so that we obtain Tµν
interaction expressed

directly in terms of ψ:
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Tinteraction
µν = – c

[ ih
2 (

∂µψ*

ψ* –
∂µψ
ψ

) – mc g0µ ] [ ih
2 (

∂νψ*

ψ* –
∂νψ
ψ

) – mc g0ν ] ρ0

[ ih
2 (

∂αψ*

ψ* –
∂αψ
ψ

) – mc δα
0 ] [ ih

2 (
∂αψ*

ψ* –
∂αψ
ψ

) – mc g0α ]

[8-40]

We will now focus briefly on just the denominator of this expression, which can be

rewritten as follows:

[ ih
2 (

∂αψ*

ψ* –
∂αψ
ψ

) – mc δα
0 ] [ ih

2 (
∂αψ*

ψ* –
∂αψ
ψ

) – mc g0α ]

= – h2

4 (
∂αψ*

ψ* –
∂αψ
ψ

) (
∂αψ*

ψ* –
∂αψ
ψ

) – ihmc (
∂0ψ*

ψ* –
∂0ψ
ψ

) + m2c2

= mc – ( h
2mc)2 (

∂αψ*

ψ* –
∂αψ
ψ

) (
∂αψ*

ψ* –
∂αψ
ψ

) – ih
mc (

∂0ψ*

ψ* –
∂0ψ
ψ

) + 1

Since the square root in this result will appear frequently in the rest of the present section,

we will represent it using the letter K as follows:

K ≡ 1

– ( h
2mc)2 (

∂αψ*

ψ* –
∂αψ
ψ

) (
∂αψ*

ψ* –
∂αψ
ψ

) – ih
mc (

∂0ψ*

ψ* –
∂0ψ
ψ

) + 1

[8-41]

Note that the non-relativistic limit of K is simply:

K → 1 [8-42]

Returning to [8-40], the expression for Tµν
interaction can now be written more simply as:

Tinteraction
µν = – K

m [ ih
2 (

∂µψ*

ψ* –
∂µψ
ψ

) – mc g0µ ] [ ih
2 (

∂νψ*

ψ* –
∂νψ
ψ

) – mc g0ν ] ρ0

= – K
m [ – h2

4 (
∂µψ*

ψ* –
∂µψ
ψ

) (
∂νψ*

ψ* –
∂νψ
ψ

) – mc ih
2 (

∂νψ*

ψ* –
∂νψ
ψ

) g0µ

– mc ih
2 (

∂µψ*

ψ* –
∂µψ
ψ

) g0ν + m2c2 g0µ g0ν ] ρ0

= – K [ – h2

4m (
∂µψ*

ψ* –
∂µψ
ψ

) (
∂νψ*

ψ* –
∂νψ
ψ

) – ihc
2 (

∂νψ*

ψ* –
∂νψ
ψ

) g0µ

– ihc
2 (

∂µψ*

ψ* –
∂µψ
ψ

) g0ν + mc2 g0µ g0ν ] ρ0

[8-43]
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We now apply Rule 1 and delete the mc2 term from this expression. As in the case of Tµν
field

earlier, it is also necessary here to remove the term that would previously have cancelled

with the deleted mc2 term (in order to keep the overall divergence of the energy-momentum

tensor zero). In order to identify this term, we note that the divergence (∂ν) of the mc2 term

would have given a result of the form:

− mc2 g0µ ∂0(Kρ0)

i.e., a term containing the factor g0µ. This can cancel only with another term containing g0µ.

Hence, looking at [8-43], we must also delete the term:

– ihc
2 (

∂νψ*

ψ* –
∂νψ
ψ

) g0µ

(Again, this conclusion will be confirmed later when the full divergence is calculated.)

With these two deletions, [8-43] reduces to:

Tinteraction
µν = – K [ – h2

4m (
∂µψ*

ψ* –
∂µψ
ψ

) (
∂νψ*

ψ* –
∂νψ
ψ

) – ihc
2 (

∂µψ*

ψ* –
∂µψ
ψ

) g0ν ] ρ0 [8-44]

The relativistic approximation will now be obtained by taking the limit c → ∞. In taking

this limit, we will need to consider the Tij, Ti0, T0i and T00 cases separately.

8.3.1 Non-Relativistic Tij
interaction

For this case, [8-44] yields:

Tinteraction
ij = – K [ – h2

4m (
∂ iψ*

ψ* –
∂ iψ
ψ

) (
∂ jψ*

ψ* –
∂ jψ
ψ

) – 0 ] ρ0

and taking the non-relativistic limit via [8-2] and [8-42], we obtain:

Tinteraction
ij = h2

4m (
∂ iψ*

ψ* –
∂ iψ
ψ

) (
∂ jψ*

ψ* –
∂ jψ
ψ

) ρ [8-45]
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8.3.2 Non-Relativistic Ti0
interaction

Inserting µ = i, ν = 0 into [8-44], we have:

Tinteraction
i0 = – K [ – h2

4m (
∂ iψ*

ψ* –
∂ iψ
ψ

) (
∂0ψ*

ψ* –
∂0ψ
ψ

) – ihc
2 (

∂ iψ*

ψ* –
∂ iψ
ψ

) ] ρ0

= – K [ – h2

4mc (
∂ iψ*

ψ* –
∂ iψ
ψ

) (
∂ tψ*

ψ* –
∂ tψ
ψ

) – ihc
2 (

∂ iψ*

ψ* –
∂ iψ
ψ

) ] ρ0

Dividing through by c in accordance with Rule 2, this becomes:

Tinteraction
i0 = – K [ – h2

4mc2 (
∂ iψ*

ψ* –
∂ iψ
ψ

) (
∂ tψ*

ψ* –
∂ tψ
ψ

) – ih
2 (

∂ iψ*

ψ* –
∂ iψ
ψ

) ] ρ0

and taking the limit c → ∞ then yields:

Tinteraction
i0 = ih

2 (
∂ iψ*

ψ* –
∂ iψ
ψ

) ρ [8-46]

8.3.3 Non-Relativistic T0i
interaction

Inserting µ = 0, ν = i into [8-44], we obtain:

Tinteraction
0i = – K [ – h2

4m (
∂0ψ*

ψ* –
∂0ψ
ψ

) (
∂ iψ*

ψ* –
∂ iψ
ψ

) – 0 ] ρ0

= – K [ – h2

4mc (
∂ tψ*

ψ* –
∂ tψ
ψ

) (
∂ iψ*

ψ* –
∂ iψ
ψ

) ] ρ0

Multiplying through by c in accordance with Rule 1 then gives:

Tinteraction
0i = – K [ – h2

4m (
∂ tψ*

ψ* –
∂ tψ
ψ

) (
∂ iψ*

ψ* –
∂ iψ
ψ

) ] ρ0

and taking the non-relativistic limit via [8-2] and [8-42] then yields:

Tinteraction
0i = h2

4m (
∂ tψ*

ψ* –
∂ tψ
ψ

) (
∂ iψ*

ψ* –
∂ iψ
ψ

) ] ρ [8-47]

8.3.4 Non-Relativistic T00
interaction

Inserting µ = 0 and ν = 0 into [8-44], we obtain:
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Tinteraction
00 = – K [ – h2

4m (
∂0ψ*

ψ* –
∂0ψ
ψ

) (
∂0ψ*

ψ* –
∂0ψ
ψ

) – ihc
2 (

∂0ψ*

ψ* –
∂0ψ
ψ

) ] ρ0

= – K [ – h2

4mc2 (
∂ tψ*

ψ* –
∂ tψ
ψ

) (
∂ tψ*

ψ* –
∂ tψ
ψ

) – ih
2 (

∂ tψ*

ψ* –
∂ tψ
ψ

) ] ρ0

and taking the non-relativistic limit c → ∞, together with [8-2] and [8-42], then yields:

Tinteraction
00 = ih

2 (
∂ tψ*

ψ* –
∂ tψ
ψ

) ] ρ [8-48]

8.3.5 Overall Non-Relativistic Result for Tµν
interaction

Gathering together expressions [8-45] to [8-48], our non-relativistic form for Tµν
interaction is:

Tinteraction
ij = h2

4m (
∂ iψ*

ψ* –
∂ iψ
ψ

) (
∂ jψ*

ψ* –
∂ jψ
ψ

) ρ [8-49a]

Tinteraction
i0 = ih

2 (
∂ iψ*

ψ* –
∂ iψ
ψ

) ρ [8-49b]

Tinteraction
0i = h2

4m (
∂ tψ*

ψ* –
∂ tψ
ψ

) (
∂ iψ*

ψ* –
∂ iψ
ψ

) ] ρ [8-49c]

Tinteraction
00 = ih

2 (
∂ tψ*

ψ* –
∂ tψ
ψ

) ] ρ [8-49d]

8.4 Divergence and Conservation

The final task in this chapter is to check explicitly that the overall divergence of the non-

relativistic energy-momentum tensor for the particle-field system is zero and thereby

confirm that energy and momentum are conserved. Towards this end, the divergences of

Tµν
field , Tµν

particle and Tµν
interaction will be evaluated separately.
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8.4.1 Divergence of Tµν
field

There are two distinct parts to the divergence of the non-relativistic Tµν
field , corresponding

to the cases µ = i ( = 1,2,3) and µ = 0, respectively. For the first of these, we have (using

expressions [8-37]):

∂ j Tfield
ij + ∂ t Tfield

i0 = ∂ j { h2

2m [ (∂ iψ) (∂ jψ*) + (∂ iψ*) (∂ jψ) ]

– gij [ h2

2m (∂kψ*) (∂kψ) + ih
2 (ψ* ∂ tψ – ψ ∂ tψ*) ] }

+ ∂ t { ih
2 (ψ* ∂ iψ – ψ ∂ iψ*) }

= h2

2m [ (∂ j∂
iψ) (∂ jψ*) + (∂ iψ) (∂ j∂

jψ*) + (∂ j∂
iψ*) (∂ jψ) + (∂ iψ*) (∂ j∂

jψ) ]

– h2

2m [ (∂ i∂kψ*) (∂kψ) + (∂kψ*) (∂ i∂kψ) ]

– ih
2 [ (∂ iψ*) (∂ tψ) + ψ* (∂ i∂ tψ) – (∂ iψ) (∂ tψ*) – ψ (∂ i∂ tψ*) ]

+ ih
2 [ (∂ tψ*) (∂ iψ) + ψ* (∂ t∂

iψ) – (∂ tψ) (∂ iψ*) – ψ (∂ t∂
iψ*) ]

= h2

2m [ (∂ iψ) (∂ j∂
jψ*) + (∂ iψ*) (∂ j∂

jψ ) ] + ih
2 [ (∂ iψ) (∂ tψ*) – (∂ iψ*) (∂ tψ) ]

= (∂ iψ*) [ h2

2m (∂ j∂
jψ) – ih

2 (∂ tψ) ] + (∂ iψ) [ h2

2m (∂ j∂
jψ*) + ih

2 (∂ tψ*) ]
[8-50]

This can be simplified further by using the field equation corresponding to our

Lagrangian density, i.e., by using the extended Schrodinger equation [5-21]:

h2

2m∂ j∂
jψ – ih∂ tψ = – ih

2ψ* {∇.(ρ∇S
m ) + ∂ tρ } [8-51]

Inserting [8-51] and its complex conjugate into [8-50], yields:

∂ j Tfield
ij + ∂ t Tfield

i0 = – ih
2ψ* (∂ iψ*) { ∇.(ρ∇S

m ) + ∂ tρ } + ih
2ψ (∂ iψ) { ∇.(ρ∇S

m ) + ∂ tρ }

= ih2 [ 1
ψ (∂ iψ) – 1

ψ* (∂ iψ*) ] { ∇.(ρ∇S
m ) + ∂ tρ }

and using the identity [5-14]:

∂ jS = h
2i [

∂ jψ
ψ –

∂ jψ*

ψ* ]
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we then obtain:

∂ j Tfield
ij + ∂ t Tfield

i0 = – (∂ iS) { ∇.(ρ∇S
m ) + ∂ tρ }

= (∂ iS) { ∂ j(ρ
∂ jS
m ) – ∂ tρ } [8-52]

We now turn to the second part of the divergence of Tµν
field (corresponding to µ = 0). Using

expressions [8-37], we have:

∂ j Tfield
0j + ∂ t Tfield

00 = ∂ j { h2

2m [ (∂ jψ) (∂ tψ*) + (∂ jψ*) (∂ tψ) ] } + ∂ t [ – h2

2m (∂kψ*) (∂kψ) ]

= h2

2m [ (∂ j∂
jψ) (∂ tψ*) + (∂ jψ) (∂ j∂ tψ*) + (∂ j∂

jψ*) (∂ tψ) + (∂ jψ*) (∂ j∂ tψ) ]

– h2

2m [ (∂ t∂kψ*) (∂kψ) + (∂kψ*) (∂ t∂
kψ) ]

= h2

2m [ (∂ j∂
jψ) (∂ tψ*) + (∂ j∂

jψ*) (∂ tψ) ]

Using the field equation [8-51] and its complex conjugate, this can be re-expressed as:

∂ j Tfield
0j + ∂ t Tfield

00 = [ ih∂ tψ – ih
2ψ* { ∇.(ρ∇S

m ) + ∂ tρ } ] ∂ tψ*

+ [ – ih∂ tψ* + ih
2ψ { ∇.(ρ∇S

m ) + ∂ tρ }] ∂ tψ

= ih
2 [ 1

ψ (∂ tψ) – 1
ψ* (∂ tψ*) ] { ∇.(ρ∇S

m ) + ∂ tρ }

and, using the identity [5-14] again, we obtain:

∂ j Tfield
0j + ∂ t Tfield

00 = – (∂ tS) { ∇.(ρ∇S
m ) + ∂ tρ }

= (∂ tS) { ∂ j(ρ
∂ jS
m ) – ∂ tρ } [8-53]

8.4.2 Divergence of Tµν
particle

As with Tµν
field, there are two distinct parts to the divergence of the non-relativistic

Tµν
particle, corresponding to the cases µ = 1,2,3 and µ = 0, respectively. In evaluating these
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two parts, it is necessary to keep in mind the following functional dependencies in the non-

relativistic domain:

x0 = x0(t) ≠ x0(x) [8-54a]

v = v(t) ≠ v(x) [8-54b]

ρ = ρ[x − x0(t)] = ρ[x0(t) − x] [8-54c]

Using equations [8-18], the first part of the divergence is:

∂ jTparticle
ij + ∂ tTparticle

i0 = ∂ j (mvi ρvj) + ∂ t (mvi ρ)

= mvivj ∂ jρ + m ∂ t(viρ) [since vi ≠ vi(x)]

= mvivj ∂ρ
∂xj + mρ ∂ tvi + mvi ∂ tρ

= mvivj (– ∂ρ
∂x0

j ) + mρ
∂vi

∂t + mvi ∂ρ
∂x0

j
∂x0

j

∂t

= – mvivj ∂ρ
∂x0

j + mρ
dvi

dt + mvi ∂ρ
∂x0

j vj

= ρ m
dvi

dt

and referring back to [5-4], this can then be written as:

∂ jTparticle
ij + ∂ tTparticle

i0 = ρ ∂ iQ [8-55]

where Q is Bohm’s non-relativistic quantum potential.

The second part of the divergence is:

∂ jTparticle
0j + ∂ tTparticle

00 = ∂ j (E ρvj) + ∂ t (E ρ)

= ρvj ∂ jE + Evj ∂ jρ + ρ ∂ tE + E ∂ tρ

= ρvj ∂ jE + Evj ∂ρ
∂xj + ρ ∂ tE + E ∂ρ

∂x0
j

∂x0
j

∂t

= ρvj ∂ jE + Evj (– ∂ρ
∂x0

j ) + ρ ∂ tE + E ∂ρ
∂x0

j
dx0

j

dt
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= ρvj ∂ jE – Evj ∂ρ
∂x0

j + ρ ∂ tE + E ∂ρ
∂x0

j vj

= ρvj ∂ jE + ρ ∂ tE

= ρvj ∂ j(½mv2 + Q) + ρ ∂ t(½mv2 + Q)

= ρvj ∂ jQ + ρ ∂ t(– ½mvjvj) + ρ ∂ tQ

= ρvj ∂ jQ + ρ dvi

dt
∂

∂vi (– ½mvjvj) + ρ ∂ tQ

= ρvj ∂ jQ – ρm dvi

dt ½(gijv j+ vjδ i
j) + ρ ∂ tQ

= ρvj ∂ jQ – ρvi m dvi

dt + ρ ∂ tQ

Using [5-4], this can then be written as:

∂ jTparticle
0j + ∂ tTparticle

00 = ρvj ∂ jQ – ρvi ∂ iQ + ρ ∂ tQ

= ρ ∂ tQ [8-56]

8.4.3 Divergence of Tµν
interaction

From [8-49], our non-relativistic form for Tµν
interaction is:

Tinteraction
ij = h2

4m (
∂ iψ*

ψ* –
∂ iψ
ψ

) (
∂ jψ*

ψ* –
∂ jψ
ψ

) ρ

Tinteraction
i0 = ih

2 (
∂ iψ*

ψ* –
∂ iψ
ψ

) ρ

Tinteraction
0i = h2

4m (
∂ tψ*

ψ* –
∂ tψ
ψ

) (
∂ iψ*

ψ* –
∂ iψ
ψ

) ] ρ

Tinteraction
00 = ih

2 (
∂ tψ*

ψ* –
∂ tψ
ψ

) ] ρ

and, using the identity [5-14], these expressions can be written more simply as:

Tinteraction
ij = –

(∂ iS) (∂ jS)
m ρ [8-57a]

Tinteraction
i0 = (∂ iS) ρ [8-57b]
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Tinteraction
0i = –

(∂ tS) (∂ iS)
m ρ [8-57c]

Tinteraction
00 = (∂ tS) ρ [8-57d]

As with Tµν
field and Tµν

particle, there are two distinct parts to the divergence of the non-

relativistic Tµν
interaction. Employing expressions [8-57], the first part is:

∂ jTinteraction
ij + ∂ tTinteraction

i0 = ∂ j [ –
(∂ iS) (∂ jS)

m ρ ] + ∂ t [ (∂ iS) ρ ]

= – (∂ iS) { ∂ j(ρ
∂ jS
m ) – ∂ tρ } –

(∂ jS) ∂ j(∂
iS)

m ρ + ρ ∂ t(∂
iS)

= – (∂ iS) { ∂ j(ρ
∂ jS
m ) – ∂ tρ } –

(∂ jS) ∂ i(∂ jS)
m ρ + ρ ∂ i(∂ tS)

= – (∂ iS) { ∂ j(ρ
∂ jS
m ) – ∂ tρ } – ρ ∂ i [

(∂ jS) (∂ jS)
2m – (∂ tS) ]

and, using [5-13], this can be written in terms of the quantum potential Q as:

∂ jTinteraction
ij + ∂ tTinteraction

i0 = – (∂ iS) { ∂ j(ρ
∂ jS
m ) – ∂ tρ } – ρ ∂ iQ [8-58]

Similarly, the second part of the divergence is:

∂ jTinteraction
0j + ∂ tTinteraction

00 = ∂ j [ –
(∂ tS) (∂ jS)

m ρ ] + ∂ t [ (∂ tS) ρ ]

= – (∂ tS) { ∂ j(ρ
∂ jS
m ) – ∂ tρ } –

(∂ jS) ∂ j(∂ tS)
m ρ + ρ ∂ t(∂ tS)

= – (∂ tS) { ∂ j(ρ
∂ jS
m ) – ∂ tρ } –

(∂ jS) ∂ t(∂ jS)
m ρ + ρ ∂ t(∂ tS)

= – (∂ tS) { ∂ j(ρ
∂ jS
m ) – ∂ tρ } – ρ ∂ t [

(∂ jS) (∂ jS)
2m – (∂ tS) ]

and using [5-13] again, this can be expressed more simply in terms of the potential Q, as

follows:

∂ jTinteraction
0j + ∂ tTinteraction

00 = – (∂ tS) { ∂ j(ρ
∂ jS
m ) – ∂ tρ } – ρ ∂ tQ [8-59]
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8.4.4 Divergence of Tµν
total

From equation [7-31] we have

Ttotal
µν = Tfield

µν + Tparticle
µν + Tinteraction

µν

The divergence of this overall energy-momentum tensor can now be obtained by

combining the various results obtained above. As usual, the divergence will be written in

two parts. First, using [8-52], [8-55] and [8-58], we have:

∂ jTtotal
ij + ∂ tTtotal

i0 = ∂ jTfield
ij + ∂ tTfield

i0 + ∂ jTparticle
ij + ∂ tTparticle

i0 + ∂ jTinteraction
ij + ∂ tTinteraction

i0

= (∂ iS) {∂ j(ρ
∂ jS
m ) – ∂ tρ}  + ρ ∂ iQ  + – (∂ iS) {∂ j(ρ

∂ jS
m ) – ∂ tρ} – ρ ∂ iQ

which cancels to:

∂ jTtotal
ij + ∂ tTtotal

i0 = 0 [8-60]

Second, using [8-53], [8-56] and [8-59], we have:

∂ jTtotal
0j + ∂ tTtotal

00 = ∂ jTfield
0j + ∂ tTfield

00 + ∂ jTparticle
0j + ∂ tTparticle

00 + ∂ jTinteraction
0j + ∂ tTinteraction

00

= (∂ tS) {∂ j(ρ
∂ jS
m ) – ∂ tρ}  + ρ ∂ tQ  + – (∂ tS) {∂ j(ρ

∂ jS
m ) – ∂ tρ} – ρ ∂ tQ

which cancels to:

∂ jTtotal
0j + ∂ tTtotal

00 = 0 [8-61]

Equations [8-60] and [8-61] are the desired results for energy and momentum

conservation. (The divergence calculations above also serve as a useful double-check on

our derivations of the non-relativistic expressions for Tµν
field, Tµν

particle and Tµν
interaction.)

Therefore, from the viewpoint of conservation, a satisfactory non-relativistic model has

been achieved.
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8.5 Simplifications in the Bohmian Case

Some additional discussion is now needed to highlight the simplifications which occur in

the above equations in the main case of interest. It will be helpful here to restate the three

divergence results of Sec. 8.4 for further examination:

∂ j Tfield
0j + ∂ t Tfield

00 = (∂ tS) { ∂ j(ρ
∂ jS
m ) – ∂ tρ } [8-53]

∂ jTparticle
ij + ∂ tTparticle

i0 = ρ ∂ iQ [8-55]

∂ jTinteraction
ij + ∂ tTinteraction

i0 = – (∂ iS) { ∂ j(ρ
∂ jS
m ) – ∂ tρ } – ρ ∂ iQ [8-58]

In developing our Lagrangian formulation, it was necessary to suspend the Bohmian

restriction p = ∇∇∇∇S on the velocity of the particle. This meant we were actually

considering a wide class of models, all of which satisfy the conservation laws for energy

and momentum, but most of which need not be in agreement with the predictions of

quantum theory. These models all satisfy the three divergence equations above. Note that,

in general, the three different divergences (for Tµν
particle, Tµν

field and Tµν
interaction) are all

non-zero so that, for example, energy and momentum are being exchanged between the

particle and the field.

Eventually, however, it is necessary to restore the restriction p = ∇∇∇∇S in order to return to

Bohm’s model and agreement with experiment. This limits us to one particular model

within the class considered. Since the whole class of models satisfies the energy and

momentum conservation laws, the special model now singled out will do so as well. (The

restriction is just an extra constraint which does not conflict with the earlier

considerations in any way.) However, the assumption of no creation or annihilation of
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particles, in conjunction with p = ∇∇∇∇S, simplifies the above divergence equations

significantly, so that they become:

∂ j Tfield
0j + ∂ t Tfield

00 = 0 [8-62]

∂ jTparticle
ij + ∂ tTparticle

i0 = ρ ∂ iQ [8-63]

∂ jTinteraction
ij + ∂ tTinteraction

i0 = – ρ ∂ iQ [8-64]

In other words, in the special case of the Bohmian model singled out, the general

relationship:

∂ν Tfield
µν + ∂ν Tinteraction

µν + ∂ν Tparticle
µν = 0 [8-65]

reduces to the two separate relationships:

∂ν Tfield
µν = 0 [8-66]

and

∂ν Tinteraction
µν + ∂ν Tparticle

µν = 0 [8-67]

so that the formalism becomes somewhat less elegant in the Bohmian case7. This break-

up into equations [8-66] and [8-67] is a necessary consequence of having a source-free

wave equation. It tends, however, to disguise the fact that conservation is present, with

the relationship [8-66] being particularly misleading in this regard. The apparent

difficulty posed by this equation, as highlighted in the discussions of Sec. 6.4, has

nevertheless been resolved by the necessary existence of the term Tµν
interaction, to which

we have been led by examining Noether’s theorem.

                                                
7 An additional simplification is that the independent expressions for Tµν

particle and Tµν
interaction become

connected by Tparticle
µν = – Tinteraction

µν
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In conclusion, although the equations become rather simple in the one special case with

which we are most concerned, this should not serve as a distraction from the successful

reintroduction of energy and momentum conservation and the necessity of reaching it via

the more general Lagrangian formulation employed.
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