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Chapter 6: Energy-Momentum Tensors

This chapter outlines the general theory of energy and momentum conservation in terms

of energy-momentum tensors, then applies these ideas to the case of Bohm's model. We

will focus in particular on the case of a scalar field interacting with a particle. The rate of

change of energy and momentum is described in terms of tensor divergence equations.

6.1 Basic Theory

With fields, we are concerned with densities, such as charge, probability, energy and

momentum density. The treatment of the distribution of energy and momentum within

the field proceeds in the same way as for the more familiar cases of charge and

probability. Conservation of these latter quantities is described by a continuity equation

involving both a density ρ and a current density ji = ρvi (i = 1,2,3):

∂ i ji + ∂ t ρ = 0 [6-1]

The densities that characterise a field's energy and momentum content are summarised in

the form of the energy-momentum tensor Tµν. The various terms in this quantity

correspond to energy and momentum densities and energy and momentum currents. In

particular, the momentum density component in the ith direction (for example, ρvi in the

case of a fluid having a mass density ρ and no internal stresses) will have a current

component in the jth direction (ρvivj for a stressless fluid). Thus we are led to a

description involving two indices i and j. In the relativistic case, the indices can

separately have any of the values µ,ν = 0, 1, 2, or 3 and so the energy momentum tensor

Tµν consists of 16 components. In analogy to the continuity equation [6-1], energy and

momentum conservation is described by the following set of 4 equations:

∂ j Tµj + ∂0 Tµ0 = 0 [6-2]
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The equation corresponding to µ = 0 contains the terms T0j and T00 and describes

conservation of energy. The 3 equations corresponding to µ = i = 1, 2, 3 contain the terms

Tij and Ti0 and describe conservation of each component of momentum. In the relativistic

case, it can be shown that conservation of angular momentum requires Tµν to be

symmetric in µ and ν and, as a consequence, the number of independent components is

reduced from 16 to 10. These components have the following interpretation (ignoring any

factors of c):

• T00 = energy density [6-3a]

• Ti0 = T0i = three components of momentum density (equivalent to energy current)
[6-3b]

• Tij = Tji = six components of momentum current [6-3c]

Equations [6-2] can be written more elegantly as:

∂ν Tµν = 0 [6-4]

6.2 Energy-Momentum Tensor for a Scalar Field

It can be shown1 that the energy-momentum tensor for a real, free scalar field φ described

by a Lagrangian density å is of the form:

Tµν = [ ∂µφ ∂
∂(∂νφ)

– gµν ]å [6-5]

where we are using the notation

gµν ≡ 1 for µ = ν = 0 [6-6a]

      ≡ −1 for µ = ν = 1,2,3 [6-6b]

      ≡ 0 for µ ≠ ν [6-6c]

∂µφ ≡ ∂φ/∂xµ [6-6d]

∂µφ ≡ gµν ∂νφ [6-6e]
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Using the Lagrangian density [4-10] for a real, massless scalar field:

å scalar field = ½ (∂µφ) (∂µφ)

the corresponding energy-momentum tensor is found from [6-5] to be:

Tµν = (∂µφ) (∂νφ) – ½ gµν (∂λφ) (∂λφ) [6-7]

6.3 Energy and Momentum for a Scalar Field interacting with a Particle

From chapter 4, the overall Lagrangian density for describing a particle in interaction

with a real, massless scalar field is given by [4-19]:

å system = ½ (∂µφ) (∂µφ) + [ ½ mv2 – qφ ] ρ [6-8]

For a field that is exchanging energy and momentum with a particle, the basic condition

expected for conservation is that the rate of change of the particle’s energy and

momentum must exactly match the rate of change of the field’s energy and momentum,

thus ensuring that the total remains constant. Also, the energy and momentum changes

must also occur in a local manner. This means that the net energy and momentum flux

into or out of the field in the immediate vicinity of the particle trajectory should match

the particle's change of energy and momentum.

6.3.1 Energy and Momentum Conservation Equations

For the system characterised by the Lagrangian density [6-8] above, it is possible to

derive conservation equations illustrating and confirming that changes in the field's

momentum and energy are compensated by changes in the particle's momentum and

energy. The 4-divergence of the field’s energy momentum tensor yields expressions

corresponding to the rate of change of the field’s energy and momentum and

consequently, as a first step towards obtaining the particle-field system conservation

                                                                                                                                                                            
1 See, e.g., Ch. 12 in Goldstein H., Classical Mechanics, 2nd Ed. Addison-Wesley, Massachusetts (1980).
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equations, we will evaluate the 4-divergence of the field's energy-momentum tensor [6-

7]:

∂ν Tfield
µν = ∂ν [ (∂µφ) (∂νφ) – ½ gµν (∂λφ) (∂λφ) ] [6-9a]

= (∂ν∂
µφ) (∂νφ) + (∂µφ) ( ∂ν∂

νφ) – 1
2 [ (∂µ∂λφ) (∂λφ) + (∂λφ) (∂µ∂λφ) ] [6-9b]

= (∂λ∂
µφ) (∂λφ) + (∂µφ) ( ∂ν∂

νφ) – 1
2 [ (∂µ∂λφ) (∂λφ) + (∂µ∂λφ) (∂λφ) ] [6-9c]

= (∂µ∂λφ) (∂λφ) + (∂µφ) ( ∂ν∂
νφ) – (∂µ∂λφ) (∂λφ) [6-9d]

= (∂µφ) ( ∂ν∂
νφ) [6-9e]

Now, the field equation which follows from the Lagrangian density [6-8] above is

equation [4-20]:

∂µ∂
µφ = – q ρ

which is simply the free-field equation with a source term added. Inserting this field

equation into [6-9e] yields the tensor divergence equation:

∂ν Tfield
µν = – q ρ ∂µφ [6-10]

Returning again to the Lagrangian density [6-8], the particle equation of motion it yields

via the integral equations [4-16] and Lagrange's equations [4-3] is the usual one for a

particle in a scalar field:

dpi

dt = q ∂ iφ [6-11]

Also, from this equation for the rate of change of the particle's momentum, it is

straightforward to derive an analogous one for the particle's energy (see Appendix 3):

dE
dt = q

∂φ
∂t [6-12]

We are now in a position to write down the equations we are seeking. Inserting [6-11]

into the right hand side of [6-10], we obtain:

∂ν Tfield
iν = – ρ

dpi

dt (i = 1,2,3) [6-13]
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Similarly, inserting [6-12] into [6-10], we obtain:

c ∂ν Tfield
0ν = – ρ

dE
dt [6-14]

These are the two desired equations. They link the local changes in the field's momentum

and energy to those of the particle, in accordance with the requirement of conservation.

Equations [6-13] and [6-14] also hold for other classical cases, such as a particle

interacting with an electromagnetic field (see the Lagrangian density [4-21] earlier). In

developing our Lagrangian approach to Bohm's model, it will be necessary for something

similar to hold in the case of a Bohmian particle interacting with a Schrodinger field.

6.3.2 Introduction of Tµν
particle

In the case of a particle interacting with a scalar field, conservation of momentum and

energy can also be expressed by introducing an energy-momentum tensor for the particle

and writing the following set of divergence equations (µ,ν = 0,1,2,3):

∂ν(Tµν
field + Tµν

particle) = 0 [6-15]

For a relativistic particle, Tµν
particle has the form2:

Tµν
particle = ρ0muµuν [6-16]

where ρ0, m and uµ are rest density, rest mass and 4-velocity, respectively. This

expression for Tµν
particle will be utilised in a later chapter. The set of equations [6-15] can

be shown3 to be equivalent to the relativistic versions of [6-13] and [6-14] provided

expression [6-16] is chosen for Tµν
particle.

From [6-15], the conservation of the three components of momentum (i = 1,2,3) will be

described by the equations

∂ν(Tiν
field + Tiν

particle) = 0 [6-17a]

                                                          
2 See, e.g., Sec. 10-1 in Adler R., Bazin M. and Schiffer M., Introduction to General Relativity, 2nd Ed.
McGraw-Hill Kogakusha, Tokyo (1975).
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and conservation of energy will be described by

∂ν(T0ν
field + T0ν

particle) = 0 [6-17b]

6.3.3 Global Equations

Equations [6-17] involve momentum and energy densities and ensure conservation

"locally" at each point in space. On the other hand, the conservation of the total values of

momentum and energy will be described by the following "global" equations (i = 1,2,3):

d
dt [ pfield

i + pparticle
i ] = 0 [6-18a]

d
dt [ Efield + Eparticle ] = 0 [6-18b]

Equations [6-18a] and [6-18b] can be derived from the "local" versions [6-17a] and [6-

17b] by integrating over all space:

∂νTfield
iν d3x

– ∞

∞

+ ∂νTparticle
iν d3x

– ∞

∞

= 0 [6-19a]

∂νTfield
0ν d3x

– ∞

∞

+ ∂νTparticle
0ν d3x

– ∞

∞

= 0 [6-19b]

The densities of momentum and energy will thereby be converted to total values. The

equivalence of equations [6-19a] and [6-19b] to equations [6-18a] and [6-18b] will now

be demonstrated. For both Tµν
field and Tµν

particle, the required integral over space can be

written out in detail as follows:

∂νT
µν d3x

– ∞

∞

= (∂0T
µ0 + ∂1T

µ1 + ∂2T
µ2 + ∂3T

µ3) d3x
– ∞

∞

[6-20]

Under the reasonable assumption that the energy-momentum tensor falls off to zero at

plus and minus infinity (in any spatial direction), the last three terms of [6-20] will be

zero and so only the term containing the time derivative survives:

∂νT
µν d3x

– ∞

∞

= ∂0 Tµ0 d3x
– ∞

∞

= 1
c

d
dt Tµ0 d3x

– ∞

∞

[6-21]

                                                                                                                                                                            
3 Felsager B., Geometry, Particles and Fields, Sec. 1-6, Springer-Verlag, NY (1998).
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In the last equality, the partial derivative has been replaced by the total derivative

because, after the spatial integration d3x has been performed, only time dependence

remains. With the aid of [6-21], equations [6-19a] and [6-19b] can be written as:

d
dt Tfield

i0 d3x +
d
dt Tparticle

i0 d3x = 0
– ∞

∞

– ∞

∞

[6-22a]

d
dt Tfield

00 d3x +
d
dt Tparticle

00 d3x = 0
– ∞

∞

– ∞

∞

[6-22b]

Now, Ti0 and T00 can be identified from equations [6-3a] and [6-3b] earlier as momentum

density and energy density, respectively. Therefore these equations reduce to the global

equations [6-18a] and [6-18b] as required:

d
dt [ pfield

i + pparticle
i ] = 0

d
dt [ Efield + Eparticle ] = 0

6.4 Tentative Application to Bohm's Model

Having summarised the relevant theoretical formalism, we will now attempt to employ it

to introduce conservation of energy and momentum into Bohm's model. In doing so, it

will be found that some difficulties arise. Fortunately these can all be overcome by a

deeper and more careful analysis. We will look briefly here at the problems that are

encountered as a pointer towards an appropriate course of action to follow in the next

chapter.

As discussed in chapter 5, our proposed Lagrangian density for Bohm's model is:

å = h2

2m[∂ jψ
∗(x)] [∂ jψ(x)] + ih

2 [ψ∗(x) ∂ tψ(x) – ψ(x) ∂ tψ
∗(x)]

( field terms)
– ½ m ρ(x – x0) vj vj ( particle term)
– ρ(x – x0) Q(x) (interaction term)

[5-1]
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By analogy with the classical cases of a particle in a scalar or vector field, we tentatively

expect that equation [6-15] will continue to hold:

∂ν(Tµν
field + Tµν

particle) = 0

in the case of the system described by [5-1]. Equation [6-15] describes transfers of energy

and momentum between the field and the particle, in accordance with the requirements of

conservation. As a first step towards establishing whether this equation remains valid in

our Bohmian case, we will derive the free-field energy-momentum tensor corresponding

to [5-1].

Because our Lagrangian density is non-relativistic, it does not possess the sort of

symmetry between space and time that is characteristic of relativistic Lagrangians. It is

therefore necessary to obtain separate expressions for Tij, Ti0, T0i and T00 (i,j = 1,2,3),

rather than just a single Tµν expression (µ,ν = 0,1,2,3). This lengthens the derivation

somewhat. The desired expressions are found from the free-field part of the Lagrangian

density [5-1] by applying the formula:

Tfield
µν = [ ∂µφ ∂

∂(∂νφ)
+ ∂µφ* ∂

∂(∂νφ
*)

– gµν ]å field [6-23]

which is a generalisation of equation [6-5] from the case of a real field to that of a

complex field. The derivations are given in Appendix 4 and the results are:

Tfield
ij = h2

2m { (∂ iψ) (∂ jψ∗) + (∂ iψ*) (∂ jψ) – gij (∂kψ
∗) (∂kψ) }

– gij i h
2 (ψ∗ ∂ tψ – ψ ∂ tψ

∗)
[6-24a]

Tfield
i0 = i h

2 { ψ∗ ∂ iψ – ψ ∂ iψ*} [6-24b]

Tfield
0i = h2

2m { (∂ tψ ) ( ∂ iψ∗) + (∂ tψ
∗) (∂ iψ) } [6-24c]

Tfield
00 = – h2

2m (∂kψ
∗) (∂kψ) [6-24d]
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Looking at these expressions, our first difficulty is apparent. The energy-momentum

tensor is not symmetric, since we have:

Ti0 ≠ T0i [6-25]

whereas a symmetric tensor had been expected from the relativistic discussion earlier in

this chapter. Techniques exist to symmetrise an energy-momentum tensor4. However, as

later analysis will show, the present lack of symmetry should not simply be removed in

this way. Instead, its significance should and will be examined carefully. This matter will

be resolved in the next chapter.

Leaving this point and continuing on, we want to see whether the energy-momentum

tensor above yields conservation by satisfying equations [6-13] and [6-14]. Of these two

equations, it will be sufficient to discuss [6-13]:

∂ν Tfield
iν = – ρ

dpi

dt (i = 1,2,3)

For our present purpose, the divergence on the left of this equation needs to be split into

separate space and time components, so that we have:

∂ j Tfield
ij + ∂ t Tfield

i0 = – ρ
dpi

dt [6-26]

To check whether the energy-momentum tensor summarized in equations [6-24] is

consistent with this conservation condition, expressions [6-24a] and [6-24b] will be

inserted into the left hand side of [6-26]. This is done in Appendix 5. For the usual non-

relativistic situation of a single particle with no creation or annihilation, the following

result is obtained:

∂ j Tfield
ij + ∂ t Tfield

i0 = 0 [6-27]

Hence, unlike the scalar and vector field cases discussed in the previous chapter, the

divergence of the field's energy-momentum tensor is zero here even when there is field-
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particle interaction. This result is not consistent with equation [6-26] and forbids energy

and momentum transfer between the field and the particle. Since we appear to need an

equation like [6-26] to hold, we are faced with a second difficulty.

Of course, this zero divergence of the Schrodinger energy-momentum tensor is well

known and is one reason why people have concluded that Bohm's model is not

compatible with energy and momentum conservation5. Nevertheless, Noether's theorem

assures us that the desired conservation must exist for the Lagrangian density we have

chosen. A closer examination of Noether's theorem will be needed to resolve this

problem. However, some insight into the course to be followed can be gained by

considering another well-known case, viz., an electromagnetic field and a Dirac spinor

field in interaction. Before the interaction between these two fields begins, the

divergences of the tensors Tµν
electromag and Tµν

Dirac are, of course, separately zero:

∂ν(Tµν
electromag) = 0 [6-28]

∂ν(Tµν
Dirac) = 0 [6-29]

With the onset of the interaction, the expressions for Tµν
electromag and Tµν

Dirac do not

change (i.e., they each still look the same), but their individual divergences are no longer

zero6. Now, from our experience with the classical cases of a particle in a scalar or vector

field, one might expect the following overall condition to hold:

∂ν(Tµν
electromag + Tµν

Dirac) = 0

by analogy with [6-15]. However, this is not the case. The correct overall divergence

equation contains an extra term, as follows7:

∂ν(Tµν
electromag + Tµν

Dirac + Tµν
interaction) = 0 [6-30]

                                                                                                                                                                            
4 See, e.g., Ch. 3, Sec. 4 in Barut A., Electrodynamics and Classical Theory of Fields and Particles.
Macmillan, N.Y. (1964).
5 See p. 115 in Holland P.R., The Quantum Theory of Motion. Cambridge University Press (1995).
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This example demonstrates that the appearance of an additional term Tµν
interaction may

sometimes be needed to achieve conservation. In so doing it suggests a way in which our

second difficulty may be tackled.

Pursuing this possible approach, it seems at first sight that a suitable extra term

Tµν
interaction could be obtained simply by applying the square bracket in equation [6-23] to

the interaction part of [5-1] to construct the tentative expression:

Tinteraction
µν = [ ∂µφ ∂

∂(∂νφ)
+ ∂µφ* ∂

∂(∂νφ
*)

– gµν ]å interaction [6-31]

This does not lead to the correct result, however, as will be seen in the next chapter.

Instead the problem will be resolved more systematically by showing from first principles

the necessity of an extra term Tµν
interaction and the precise form it must take.

                                                                                                                                                                            
6 This change occurs due to the appearance of source terms in the two field equations used in evaluating the
divergences.
7 See Ch. 3, Sec. 4 in Rzewuski J., Field Theory: Vol. 1, Classical Theory. Iliffe Books, London (1967).
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