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Appendix 7: Relativistic Equation of Motion

(An appendix to Chapter 7, Sections 7.2 and 7.3)

A7.1 Derivation from the Relativistic Lagrangian Density

It will be shown here that the Lagrangian density [7-8] yields the correct equation of

motion [7-5] for the particle. The action function corresponding to this L will have the

form:

action = å d3x dt

= 1
c å d4x

= 1
c (å field +åparticle +å interaction) d4x

[A7-1]

The required equation of motion can be obtained from first principles by varying the

particle’s world line in the action function. Since the term L field in [A7-1] is not a

function of the particle’s world line, it can be ignored in the present considerations. The

remaining part of the action function has the form:

1
c (å particle +å interaction) d 4x [A7-2]

Rather than going right back to first principles, it is simpler to perform our derivation via

a relativistic version of Lagrange’s equation. The appropriate generalisation of the non-

relativistic equation [4-3] is1:

d
dτ

∂L
∂uµ = ∂L

∂x0
µ [A7-3]

This equation highlights a further consideration. We actually need a Lagrangian L to

insert into this equation, not a Lagrangian density L. Now, the partial action in [A7-2] is

related to the required Lagrangian L via2:

action I L dτ [A7-4]

                                                          
1 See, e.g., p. 329 in Goldstein H., Classical Mechanics, 2nd Ed. Addison-Wesley, Massachusetts (1980).
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both the action and L being Lorentz scalar invariants. Using the 4-velocity definition:

u0 = dx0

dτ

expression [A7-2] can also be written in the form:

action = u0

c (åparticle +å interaction) d3x dτ [A7-5]

Comparing [A7-4] and [A7-5], the desired Lagrangian is then seen to be:

L = u0

c (åparticle +å interaction) d3x
– ∞

∞

With the aid of [7-8], this expression can be written out in detail as:

L = u0

c ρ0 [ mc uµuµ + Q
uµuµ

c ] d3x
– ∞

∞

which, using the definition [7-13] for ρ0, becomes:

L = δ(x – x0) [ mc uµuµ + Q
uµuµ

c ] d3x
– ∞

∞

= mc uµuµ + Q
uµuµ

c

The particle’s equation of motion is now found by inserting this Lagrangian into

Lagrange’s equation [A7-3], which yields the following result to be simplified:

d
dτ

∂
∂uµ [ (mc + Q

c ) uνuν ] = ∂
∂x0

µ [ (mc + Q
c ) uνuν ]

Taking the u and x0 derivatives we have:

d
dτ[ (mc + Q

c ) ½ (uνuν)– ½ 2uµ ] = uνuν ∂
∂x0

µ(Q
c )

and using the identity uµuµ = c2 this reduces to

d
dτ[ (m + Q

c2) uµ ] = ∂Q
∂x0

µ [A7-6]

Finally, employing the definition [7-7] for the variable rest mass M:

M = m + Q
c2

                                                                                                                                                                            
2 See, e.g., p. 203 in Anderson J.L., Principles of Relativity Physics, Academic Press, N.Y. (1967).
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we obtain the equation of motion:

d(Muµ)
dτ = ∂Q

∂x0
µ

or, equivalently:

dpµ

dτ = ∂µQ

in agreement with the expected result [7-5].

A7.2 Consistency of the Equation of Motion with the Identity uµµµµuµµµµ = c2

In deriving the equation of motion for the particle, the restriction uµuµ = c2 is temporarily

suspended until after the variation process has been performed3. We will now carry out a

standard check that the resultant equation of motion is then consistent with the identity

uµuµ = c2 without any unwanted restrictions arising. For this purpose, it is most convenient

to use the form shown in equation [A7-6]. Introducing uµ on both sides of [A7-6], we

obtain

uµ d
dτ [ (m + Q

c2) uµ ] = uµ ∂Q
∂x0

µ

which can be written as:

uµuµ
d
dτ(m + Q

c2) + (m + Q
c2) uµduµ

dτ = dQ
dτ

i.e.,

uµuµ
d
dτ( Q

c2) + (m + Q
c2) ½

d(uµuµ)
dτ = dQ

dτ

Using the identity uµuµ = c2 we then have:

c2 d
dτ ( Q

c2) + (m + Q
c2) ½

d(c2)
dτ = dQ

dτ

i.e.,

dQ
dτ + 0 = dQ

dτ [A7-7]
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and the fact that an identity has been obtained without imposing any extra assumption

establishes the desired degree of consistency.

The need for us to do the above check can be seen by considering the discussion prior to

equations [7-9] and [7-10]. If one chooses not to include the factor of uµuµ  in the

interaction term of the Lagrangian density [7-8], it is easily shown that the following

equation of motion is obtained for the particle instead:

d(muµ)
dτ = ∂Q

∂x0
µ [A7-8]

Repeating the above consistency check by introducing uµ on both sides of this new

equation, it is then found that the strong condition:

dQ
dτ = 0

is deduced instead of the simple identity [A7-7]. Hence choosing the alternative equation

of motion [A7-8] and its corresponding Lagrangian density would lead to an

unacceptable restriction on the form of the potential Q.

                                                                                                                                                                            
3 See, e.g., p. 329 in Goldstein H., Classical Mechanics, 2nd Ed. Addison-Wesley, Massachusetts (1980).
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